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ABSTRACT. In this work a computational tool, aiming to predict the crack 
propagation (i.e. straight propagation, single deflection or bifurcation) in layered 
ceramics designed with internal residual stresses, is developed. They consist of two 
material layers with different properties, alternated in a multilayer structure. The 
internal stresses developed during sintering are associated with the thermal expansion 
mismatch between adjacent layers and volume ratio between both materials. The 
computational model is based on Finite Fracture Mechanics theory, especially focused 
on cracks terminating at the interface between two different material layers. The 
method utilizes a matched asymptotic procedure to derive the change of potential 
energy associated with the fracture process. The crack follows the path which 
maximizes the energy released in the fracture process. A combined loading (thermal 
and mechanical) is taken into consideration to clarify the influence of the residual 
stresses on the crack path during fracture. The results predicted by the proposed 
fracture criterion are in good agreement with the experimental observations on the real 
laminate. 
 
 
INTRODUCTION 
 
Layered ceramics have become an alternative choice for the design of structural 
ceramics with improved fracture toughness and mechanical reliability. The brittle 
fracture of monolithic ceramics has been overcome by introducing layered architectures 
of different kind, i.e. geometry, composition of layers, residual stresses, weak interfaces, 
etc. The main goal of such layered ceramics has been to enhance the fracture energy of 
the system. Among the various laminate designs reported in literature, two main 
approaches regarding the fracture energy of the interfaces must be highlighted. On the 
one hand, laminates designed with weak interfaces have been reported to yield 
significant enhanced failure resistance through interface delamination [1-8]. The 
fracture of the first layer is followed by crack propagation along the interface, the so-
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called “graceful failure”, preventing the material from catastrophic failure. On the other 
hand, laminates designed with strong interfaces have shown significant crack growth 
resistance (R-curve) behaviour through microstructural design (e.g. grain size, layer 
composition) [9-12] and/or due to the presence of compressive residual stresses, acting 
as a barrier (“flaw tolerant”) to crack propagation [3,13-20]. 

The increase in fracture energy in these laminates is associated with energy 
dissipating mechanisms such as crack deflection/bifurcation phenomena, which act 
during crack propagation. The optimisation of the layered design is based on the 
capability of the layers to deviate the crack from straight propagation. Experimental 
observations have shown the tendency of a crack to propagate with an angle through the 
compressive layer and even cause delamination of the interface [21] (see Fig. 1). The 
magnitude of compressive stresses can influence the angle of propagation and 
subsequent delamination of the interface. 
 

  

Figure 1. (left) Fracture of a layered ceramic system under flexural bending; bright 
layers have compressive residual stresses. (right) Bifurcation of a crack entering the 

first compressive layer of the laminate. 

 
The prediction of the crack path upon loading in such layered systems may help in 

tailoring the design with maximal fracture energy. Methods based on energetic 
considerations are available which attempt to predict the behaviour of a crack 
approaching the interface of dissimilar materials (see for instance [22]). However, the 
modelling of the propagation of an interface crack through the layered architecture with 
residual stresses is still missing. A method which can be used to predict the conditions 
under which the crack will deflect or bifurcate within the compressive layer is sought. 
In this work, a model based on the finite fracture mechanics approach is developed to 
interpret and predict the direction of propagation of a crack impinging an interface of a 
multilayered ceramic designed with internal residual stresses. The thermal strains in the 
layers occurring during sintering, which are responsible for the mechanical behaviour of 
the laminate, are taken into account in the model.  
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MECHANICAL BEHAVIOUR OF A CERAMIC LAMINATE DESIGNED 
WITH RESIDUAL STRESSES 
 
The mechanical behaviour of a layered ceramic composed of thin layers of Al2O3 with 
30% monoclinic ZrO2 (referred to as AMZ layers), sandwiched between thicker layers 
of Al2O3 with 5% tetragonal ZrO2 (ATZ layers) was tested under the four–point 
bending. The volume ratio between the AMZ and ATZ material, i.e. VAMZ/VATZ, was ca. 
1/6. The properties of both materials were determined in monolithic samples [19] and 
are listed in Table 1.  
 

Table 1. Material properties of the laminate components 
 

Material E 
[GPa] 

ν 
[-] 

α x106 

[K-1] 
σf 

[MPa] 
KIc 

[MPa.m1/2] 
Gc 

[J/m2] 
ATZ 390±10 0.22 9.8±0.2 422±30 3.2±0.1 25±2 
AMZ 280±10 0.22 8±0.2 90±20 2.6±0.1 23±2 

 
In order to investigate the crack propagation in the laminate, a sharp notch of depth 

300μm and tip radius of ca. 25 μm, was introduced in the first ATZ layer following the 
standard SEVNB procedure according to ISO 23146. Due to the tensile residual stresses 
in the first layer a local stress intensity factor at the crack tip overcomed the fracture 
toughness KIc of the ATZ layer during the notching process. Thus, a crack between the 
notch and the first ATZ/AMZ interface originated without any additional mechanical 
load (see close-up in Fig. 2a). This was the initial state of the specimen (i.e. crack 
terminating at the first interface).  
 

 

 

Figure 2. a) Test configuration of the four-point bend experiment on a notched 
specimen and b) load-displacement curve recorded during testing. 
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To assess the crack propagation through the laminate, the notched specimen was 
loaded in four–point bending (inner and outer spans: 20 mm and 40 mm respectively) at 
a constant displacement rate of 0.5 mm/min using a universal testing machine (Zwick 
Z010, Switzerland). The testing jig is represented in Fig. 2a. The corresponding load–
displacement curve is shown in Fig. 2b.  

The first region of the curve (up to 40 N) is associated with the alignment of the 
rollers during the test. Above 50 N up to 215 N a linear behaviour can be observed: the 
crack is arrested at the interface until the critical loading force reaches aproximately 
220 N. Then a decrease in load can be appreciated, which corresponds to the 
propagation of the crack through the compressive layer. At this point a sudden crack 
bifurcation occured and propagation of both cracks branches proceeded towards the 
next interface. The propagaton angle of the bifurcated crack is shown in Figure 3. 

 

 

Figure 3. Crack path in the compressive layer of specimen #1. 
Picture taken after polishing ca. 250μm from the lateral face of the 

laminate. Volume ratio of the materials is VAMZ / VATZ = 1/6. 
 
 
MODEL FOR CRACK PROPAGATION IN CERAMIC LAMINATES BASED 
ON FINITE FRACTURE MECHANICS 
 
Stress and displacement field description in the vicinity of the crack tip 
 
In order to define a fracture criterion based on the Finite Fracture Mechanics (FFM) 
approach, an analytical description of the stress field in the vicinity of the crack tip is 
essential. Especially, crack terminating at the interface of two dissimilar materials is 
here discussed. Stress field description comprises a calculation of the singularity 
exponent, determination of the stress and displacement field distribution in the tip 
vicinity and calculation of the Generalized Stress Intensity Factors (GSIF) as well as the 
T-stress [23,24]. To calculate singularity exponents and describe the stress field 
distribution, a Muschelishvili´s solution based on complex potentials has been used. For 

90



the calculations of the Stress Intensity Factors an advantage of the two state integral 
method (Ψ-integral), based on Betti´s reciprocal theorem, has been utilized [23].  

In the following, a symmetric laminate (to avoid bending moments after the cooling 
process) consisting of 9 alternating ATZ and AMZ layers (the layer from each material 
has always the same thickness) as used for the experiments is considered for this study. 

The singular stress field and displacement field for general stress concentrator are 
given by the first two terms of the asymptotic expansion: 
 

( ) ( )
( ) ( )

1 2

1 2

1 1
1 1 2 2

0
1 1 2 2

,  

 . .
ij ij ijH r f H r f

H r H r

δ δ

δ δ

σ θ θ

θ θ

− −= ⋅ ⋅ + ⋅ ⋅

= ⋅ + ⋅U u u
      (1) 

 
where H1 and H2 are generalized stress intensity factors (GSIF) and δ1, δ2 are the 
corresponding singularity exponents (δ1<δ2) – see [23, 25]. Functions fij and ui, together 
with the mentioned singularity exponents, are calculated using a method based on the 
complex potentials. In some particular cases, H1 is negligible and makes no contribution 
(e.g. case of a crack perpendicular to the interface under pure mode I of loading). GSIF 
is calculated using Betti’s reciprocal theorem expressed in the form of path independent 
integral (see [23, 26] and the references herein for more details). 
 
Finite fracture mechanics approach 
 
Since the Energy Release Rate (ERR) for the crack terminating at the interface of two 
different materials is, for infinitesimally small crack increment, zero or infinite 
(depending on the singularity type), the classical Griffith approach cannot be applied. 
To bypass this problem, a theory of Finite Fracture Mechanics (FFM) is applied [27].  
 

  

Figure 4. Scheme of a) single crack deflection and b) crack bifurcation (branching) at 
the interface between materials M2 and M1. A local Coordinate System is defined in the 

inner domain, where the crack extension length is given as ap = ab/2 + ab/2. 
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Infinitesimal crack increment is substituted by an increment of a finite length and for 
this increment a change of the potential energy is calculated. The small perturbation 
parameter ε is defined as ε = ap/W << 1, where W is the characteristic size of the 
specimen (e.g. specimen height). A second scale to the problem can be introduced, 
represented by the scaled-up coordinates (y1, y2) = (x1 / ε, x2 / ε), which provides a 
zoomed-in view into the region surrounding the crack, see Figure 4. The xi are 
coordinates at the crack tip but in the non-zoomed state, i.e. in case of the real specimen 
with adjacent interfaces [28]. In the zoomed coordinates, yi, the influence of the 
adjacent laminate interfaces is not considered.  
 
Change of the potential energy and Energy Release Rate calculation for combined 
(thermal and mechanical) loading 
 
In order to predict the type of the further crack propagation (single or double crack 
penetration) and further propagation direction, the change of the potential energy 

paδΠ or more precisely the so-called additional energy ΔW, released by the fracture 
process has to be calculated, as given by [27]: 
 

( 1) .
p

M
a c pW G aΔ δΠ= −        (2) 

 
Gc

(M1) is the critical energy release rate of material M1, which may be determined 
experimentally (see Table 1). The term 

paδΠ  expresses the change in the potential 

energy corresponding to a certain initial crack length increment, ap. Calculation of ΔW 
is done for several crack increment lengths in all possible crack propagation directions. 
Then a direction (and type of propagation) is chosen, where the additonal energy ΔW 
reaches a maximal value. 
 
Remark: Note that the Griffith-like condition (2) is only a necessary one and not 
sufficient one. The fracture process is possible if simultaneously the stress criterion is 
also fulfilled (σ > σf   - Table 1) [29, 30]. 
 

The change of the potential energy 
paδΠ  considering both the thermal and flexural 

sources of the stress is calculated by integration of the energy release rate along the 
crack increment as given by: 
 

( )
0 0

(1) (2)
( )

0 0

... ,
p

p

a

a p b SG da W G G d
ε

δΠ ε= = + +∫ ∫      (3) 

 
where WS is the laminate height and G is the energy release rate for the given crack 
extension type. In case of a crack terminating at the interface of two dissimilar 
materials, the total energy release rate can be expressed in terms of the asymptotic 
expansion given by: 
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( ) ( ) ( ) ( )( ) ( ) ( )( )
( )22

1 2 1 1 2 2
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G

= + + = + + + + → ε →      (4) 

 
It is worth mentioning that there are two sources of stress, i.e. mechanical (m) and 

residual (r) which, separately applied, give the crack extension forces Gm and Gr. When 
both sources of stresses are applied together, then the crack extension force G is 
calculated according to Eq. (4) (more details in [31]). Hence, in our case, the first term 
of the total crack extension force due to the combined loading (flexural and thermal) is 
given by: 
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The second term of the crack extension force due to the combined loading is for the case 
of the crack bifurcation given by 
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               (6) 

 
 For the case of the single crack deflection G(2) adopts the same form as Eq. (6), 
where only one integral (from 0 to 1 - for one branch) is considered within the brackets.  

Note that GSIF or a T-stress is generally the sum of two contributions: 
 

1 1 1 2 2 2
m r m r m rH H H H H H T T T; ;= + = + = + ,    (7) 

 
where Hi

m is due to pure flexural loading and Hi
r is due to pure thermal loading 

respectively. These parameters characterize the stress state in the crack tip vicinity. In 
case, when some of the GSIF (H1 or H2), are close (or equal) to 0 (e.g. case of the crack 
perpendicular to the interface), then the Eqs. (5) and (6) would significantly simplify. 

The factors Ki p(b) (ϕp) and the opening of the crack extension ( )
12 y y′ ′V , ( )

22 y y′ ′V , etc., 
are calculated by means of FEM on the inner domain once for all, since they depend 
only on the local geometry and material properties – for details see [25, 28]. 
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RESULTS 
 
Stress field description 
 
The stress and displacement field, defined by Eq. (1), is now described for pure thermal 
and pure mechanical loading. Using the subsequent superposition, a combined loading 
can be obtained. A 2D FEM model of a laminate is developed (see Figure 5) with a 
crack terminating at the first ATZ/AMZ interface. In contrast with the experiment, no 
notch was modelled – only a straight crack which is a sufficient simplification of the 
problem. The total model height is 4.03 mm and it corresponds to the real specimen 
height, where a volume ratio VAMZ/VATZ of 1/6.1 is achieved. Width of the 2D model is 
considered as unit together with element plane strain condition. The applied loading 
force F in FEM calculations is then always related to this unit width, i.e. in comparison 
with the experimental record in Figure 2a, is multiplied by factor 1/B. 
 

 
 

Figure 5. Scheme of a laminate used for the calculations. 
 

Layer thicknesses were considered same as in a real specimen and were the 
following (from bottom): 773, 147, 616, 125, 623, 142, 634, 148, 819 μm. Vicinity of 
the crack tip was modelled with a very fine mesh (PLANE82 elements) and the 
crossings of the integration path with an interface were also refined to accurate capture 
the discontinuity by the stress σxx in this region. The element size at the crack tip was 
lower than 1μm. Radius of the circular integration path was chosen as R=7μm around 
the crack tip. Nevertheless, the choice of this radius plays no role on the computed 
GSIFs using the interaction integral [23,28]. The obtained solution of stresses and 
displacements was compared with the analytical singular field (1) based on the complex 
potentials, in order to determine a dominance domain of the singular terms. An example 
of such a comparison is shown in Figure 6, where a combined mechanical and thermal 
loading was simultaneously applied. In case of the thermal loading, the temperature 
change ΔT=-1230°C was applied to the FEM model (cooling down from the reference – 
stress free – temperature to room temperature). To simulate the mechanical (four point 
flexure) loading, the force F=10/B N was prescribed – as depicted in Figure 5 (this 
corresponds to the applied force F=10N on the real specimen of given width B – see 
Figure 2b). 
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Figure 6. Stresses and displacements for the combined loading (thermal + mechanical) 
on the circular path in the distance of R=7μm from the crack tip. ΔT=–1230°C and 

applied force is F=10N on the unit width of the specimen.  
 

It can be concluded, from Figure 6, that for the case of a strong singularity a very 
good agreement between analytical and FE solution can be obtained – up to distance of 
circa R=40μm. Knowledge of this dominance distance is important with respect to the 
fracture criterion definition – to determine a distance from the crack tip, where the 
criterion (based only on the singular terms) is valid without any significant errors. The 
analytical definition of the non-singular term σxx

(AMZ) can be found in [26]. 
Note, that for the case of a crack perpendicular to the interface one of the GSIFs is 

zero – thus H1
m = H1

r = H1 = 0 (pure mode I loading). GSIF H for the arbitrary loading 
can be derived from one reference calculation - without need of other FE simulations 
(thanks to the linear dependency of GSIF on the applied load). GSIF for the combined 
loading is then a sum of the particular contributions – Eq.(7). 
 
Crack path prediction 
 
A competition between single crack penetration and crack bifurcation in case of the 
laminate defined in the previous section was investigated. Using Eqs. (3), (5) and (6) the 
change of the potential energy for several possible propagation directions was 
calculated and is represented in Figure 7. Both, length of the crack extension ap and 
GSIF H2

m were varied in a wide range of values. The crack extension ap was varied in 

σxx
(AMZ)

10 2
,max 9.98 10 MPa.mp

−δΠ = ⋅  

Singular solution  
+ non-singular term σxx

(AMZ)  
Singular solution (only H2 term) 

FEA  (ΔT=-1230°C + 4PBT 10N) 

H2
r = 1.79 MPa.m1-δ2 

H2
m =0.05 MPa.m1-δ2 

σxx
(AMZ) = -795 MPa 

σres
(AMZ) = -710 MPa 

δ1=δ2=0.46391 
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order to be always smaller than the radius of the domain where the singular stress field 
(1) prevails.  

 
 
Figure 7. Variation of the change of the potential energy δΠ with the angle of the crack 
extension for a) single crack deflection and b) crack bifurcation. Crack extension length 

ap=25µm, H2
r=0.39 MPa.m1-δ2 and H2

m=1.1 MPa.m1-δ2 (flexure load 220N). 
 

The obtained numerical results showed that both crack bifurcation or crack deflection 
are preferred modes of fracture with respect to straight crack propagation. The angle of 
deflection/bifurcation, ϕp, was predicted to be in the range 20° – 30° which is in a good 
agreement with experimental observations. However, contrary to experimental data, the 
crack propagation was predicted even for the loading force about of 10 N, i.e. much 
lower value then the threshold value of 220 N found experimentally, see Figure 2. This 
discrepancy made us reexamine the real crack path. By inspection of the fractographic 
observations in Figure 3 it could be found that crack does not bifurcate and/or deflect 
just at the interface but at a distance Δa ≅ 25 μm behind the interface. This is due to the 
energy accumulated in the system during the unstable crack propagation (in the ATZ 
layer which is subjected to tensile residual stress) before the crack reaches the interface. 
The accumulated energy allows the crack to penetrate inside the compressive layer. The 
stress field around the edge of the penetrating crack is square-root singular with the 
regular stress intesity factor KI. It is worth mentioning that the radius of the dominance 
domain of the square-root singular field is only few microns as detailed numerical 
calculations revealed. Outside this domain the singular stress field (1) still prevails. 
However, it was found that the intensity of the singular stress field (1) caused by pure 
thermal loading, H2

r, is significantly reduced. This is associated with the sharp change 
of residual stress between ATZ and AMZ layer. From linearity and dimensional 
considerations we can relate the GSIF H2

r and the regular stress intesity factor KI
r  as: 

 
 ( ) 21r r

I ATZ 2 ATZK t a k H t δ
Δ

−
+ = ⋅ , (8) 

 
where tATZ denotes the thickness of the ATZ layer and k is a dimensionless coefficient 
which describes the reduction of GSIF H2

r. The coefficient k can be found from the 

10 2
,max 9.98 10 MPa.mp

−δΠ = ⋅ 10 2
,max 10.61 10 MPa.mb

−δΠ = ⋅
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numerical calculations of KI
r, specifically k ≅ 0.22. If the reduction of GSIF H2

r is 
applied in the crack deflection/branching analysis, a very good agreement with 
experimental data is obtained. Figure 7 shows that the crack branches/deflects at the 
angle ϕp ≅22° for the loading force F ≅220 N when the additonal energy ΔW (see 
Eq. (2)) is starting to be greater than zero. It can be also inferred from Figure 7 that 
crack bifurcation is preferred to crack deflection, because the change of the potential 
energy δΠ during crack bifurcation is (slightly) greater than that corresponding to to 
single crack deflection. 

The key feature in the design is the high residual compressive stress in the AMZ 
layer, which is present in laminate configurations with relative high material volume 
ratio (i.e. VATZ/VAMZ ≥ 5). In laminate configurations with lower volume ratios the 
residual stresses are lower and the inclined single penetration of the crack might be 
preferred to crack bifurcation. 
 

CONCLUSIONS 
 
A semi-analytical model based on Finite Fracture Mechanics theory has been developed 
to describe and predict the crack propagation (i.e. straight propagation, single deflection 
or bifurcation) in layered ceramics during flexural loading. Results have been compared 
with experiments in an alumina-zicronia multilayer ceramic designed with internal 
residual stresses. A combined loading (thermal and mechanical) has been taken into 
consideration to clarify the influence of the residual stresses on the crack path during 
fracture. 

The proposed fracture criterion, where the crack follows the path which maximizes 
the energy released in the fracture process, can predict both the type and angle of 
propagation of a crack through the interface in a layered structure. For the laminate of 
study, crack bifurcation observed in experiments can be explained with the proposed 
model. The key feature in the design is the high residual internal stresses in the 
compressive layers which favour the propagation of the crack through the interface 
between layers at an inclined angle. 
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