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ABSTRACT Plastic dissipation at the crack tip under cyclic loading is responsible for  
the  creation  of  an  heterogeneous  temperature  field  around  the  crack  tip.  A  
thermomechanical model is proposed in this paper for the theoretical problem of an  
infinite plate with a semi-infinite through crack under mode I cyclic loading both in  
plane stress or in plane strain condition. It is assumed that the heat source is located in  
the  reverse  cyclic  plastic  zone.  The  analytical  solution  of  the  thermomechanical  
problem shows that the crack tip is under compression due to thermal stresses coming  
from the heterogeneous stress field around the crack tip. The effect of this stress field on  
the stress intensity factor (its maximum and its range) is calculated for the infinite plate.  
The heat flux within the reverse cyclic plastic zone is the key parameter to quantify the  
effect of dissipation at the crack tip on the stress intensity factor.

INTRODUCTION

During a cyclic loading of a crack, the plasticity is located in the reverse cyclic plastic 
zone near the crack tip which was first explained by Paris in 1964 [1] and studied later 
by Rice in 1967 [2]. This effect is now well known and participates for instance in the 
explanation of the crack closure phenomenon which was noted by Elber in 1970 [3]. In 
metals, during plastic strain, a significant part of the plastic energy (around 90% [4, 5]) 
is  converted into heat.  The dissipated energy in  the reverse cyclic  plastic zone also 
generates an heterogeneous temperature field which depends on the intensity of the heat 
source associated with the plasticity and the thermal boundary conditions of the cracked 
structure. Due to the thermal expansion of the material, the temperature gradient near 
the crack tip creates thermal stresses which contribute to stress field in this region. The 
objective of  this  work is  to  quantify the effect  on the stress  intensity factor  of this 
heterogeneous temperature field. However, there are two significant problems in order 
to  estimate  the  thermal  stresses:  the  first  is  the  quantification  of  the  heat  source 
associated  with  the  plasticity  near  the  crack  tip  and the  second is  to  make a  good 
estimation of  the boundary conditions  of the thermal  problem (convection from the 
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surface of the cracked structure for example). The proposed paper is focused on the 
theoretical problem of an infinite  plate with a  semi-infinite  through crack loaded in 
fatigue in mode I (Figure 1). In the associated thermal problem, the thermal losses due 
to convection and radiation are neglected.

Figure 1: Schematic of the thermomechanical problem of a semi-infinite crack in an 
infinite plate under cyclic tension (mode I) caused by a remotely mechanical 

loading F(t)

THE  TEMPERATURE  FIELD  ASSOCIATED  WITH  FATIGUE  CRACK 
PROPAGATION

During fatigue crack growth under cyclic loading, the cyclic plastic strains at each cycle 
are confined within the reverse cyclic plastic zone. A proportion of the plastic strain 
energy is dissipated in heat and generates a temperature variation. Generally, the size of 
this reverse cyclic plastic zone is very small. In order to determine the temperature field, 
it  is  possible  to  consider  the  thermal  problem  associated  with  the  fatigue  crack 
propagation as a line heat source centered in the reverse cyclic plastic zone along the 
crack  tip  in  an  infinitely thick  body.  Ranc  et  al.  [6]  have  compared  the  numerical 
solution (by finite element analysis) of the thermal problem in the case of a uniform 
heat source in a cylinder with a radius equal to the radius of the reverse cyclic plastic  
zone (Figure 1) and the analytical solution of the thermal  problem with a line heat 
source.  The  temperature  variation  field  obtained  with  the  line  heat  source  and  the 
uniform heat source hypothesis are very close together outside the reverse cyclic plastic 
zone. Therefore inside this zone the temperature can be very differently distributed, but 
this is not the aim of this paper. This study is focused on the effect of the temperature 
gradient on the stress state outside this plastic zone in order to calculate its consequence 
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on the stress intensity factor.

The dissipated power per unit length of crack front is assumed to be proportional to the 
surface area of the reverse cyclic plastic zone and the loading frequency f [7]:

q= f ξ = f ηr R
2 , (1)

with ξ  the dissipated energy per unit length of crack front during one cycle,  r R  
the  radius  of  the  reverse  cyclic  plastic  zone  and  η  a  material  dependent 
proportionality factor.

In the plane stress and plane strain cases,  the reverse cyclic  plastic  zone radius are 
respectively

r R=
Δ K I

2

8πσ y
2  and r R=

ΔK I
2

24πσ y
2 (2)

where Δ K I  is the range of variation of the mode I stress intensity factor and σ y  
is the cyclic yield stress of the material. For instance if we choose the following typical 
values  σ y=500 MPa  and  Δ K I=5 MPa √m ,  the  value  of  the  radius  of  the 
reverse cyclic plastic zone in plane stress is 4 µm  which remains small compared to the 
specimen size usually used in fracture mechanics tests. The dissipated power per unit 
length of crack front is therefore proportional to the variation of the stress intensity 
factor to the power four:

q=q0ΔK 4 (3)

These results have been already shown analytically [7] and numerically [8].

A constant heat source will be considered in this paper, in such case an analytical 
solution  for  our  problem exists.  Furthermore,  note  that  in  general  the  fatigue  crack 
velocity is  small,  especially when the stress intensity range  Δ K   is  close to the 
threshold value Δ K th . Since q is proportional to Δ K 4 , for a slow moving crack, 
Δ K  and also the heat source q can be assumed constant. Moreover, in such case the 

heat source associated with the fatigue crack propagation can also be considered to be 
motionless. This assumption can be justified by the calculation of the Peclet number, 
noted  Pe,  which  compares  the  characteristic  time  of  thermal  diffusion  with  the 
characteristic time associated to the heat source velocity (i.e. the velocity of the reverse 
cyclic plastic zone at the crack tip). In this case the Peclet number is expressed by

Pe=
Lv
a

(4)
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where L is the characteristic length of crack propagation, ν the crack velocity and a  the 
thermal diffusivity. For a crack length of around 1 mm, a crack velocity of 0.1 mm.s-1 

and a thermal diffusivity of 1.5×10-5 m2s-1 (typical value for steel) the Peclet number is 
6×10-3. This value remains small compared to unity and therefore the heat source can 
also be considered as motionless.

Within all these assumptions, the thermal problem is axisymetric and if the line heat 
source is along the z axis which is the normal direction to the surface of the plate (figure 
1a), the associated heat transfer equation is 

ρC
∂T
∂ t
=qδ(0)+λ

∂
2T
∂ r 2 (5)

with ρ the density of the material, C its heat capacity,  λ its heat conductivity and δ(r) 
the Dirac function.

At time t=0, we suppose an homogeneous temperature T0 of the plate. Between time 
t=0 and  time  t ,  the  temperature  variation  field  ϑ(r , t)=T (r , t)−T 0  can  be 
expressed by [9]:

ϑ(r , t)=
1

4πλ∫0

t
q e

−r 2

4a(t−t ' ) dt '
t−t '

=
q

4 πλ∫u= r 2

4at

+∞ e−u

u
du=

−q
4πλ

Ei (−r 2

4at ) (6)

with  a=λ/(ρC )  the  heat  diffusivity  and  −Ei (−x)=∫x

∞ e−u

u
du  the  integral 

exponential  function.  The  temperature  is  proportional  to  the  dissipated  power  (see 
equation 6).

Figure 2  illustrates   the evolution of the temperature variation field  for  different 
times according to the radius r  from the line heat source. For this calculation, standard 
thermal and physical properties for steel are used. The density, the heat capacity and the 
thermal conductivity are taken to be respectively  ρ=7800 kg.m-3 , C=460 JK-1kg-1 and 
λ=52 Wm-1K-1. The dissipated power per unit length of crack front is chosen equal to 
the  unit  (q=1 W.m-1).  The  curve  on  Figure  2  shows  that  the  temperature  increases 
abruptly when the radius tends to zero.
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Figure 2: The temperature variation field near the crack tip for q = 1 Wm-1.

THE  STRESS  FIELD  ASSOCIATED  WITH  THE  TEMPERATURE  FIELD 
NEAR THE CRACK TIP

The thermo-mechanical problem

The temperature field associated with the heat source in the reverse cyclic plastic zone 
generates  a  temperature  gradient  varying  with  time  outside  this  plastic  zone  and 
consequently thermal stresses due to the thermal expansion of the material. In order to 
estimate these thermal stresses the thermo-mechanical problem with the temperature 
field  previously  calculated  needs  to  be  solved.  This  thermo-mechanical  problem is 
supposed to be bi-dimensional because the temperature field is axisymetric. Indeed, we 
consider the theoretical problem of an infinite plate with a semi-infinite through crack 
under mode I cyclic loading (Figure 1). The material is assumed to be homogeneous and 
isotropic with an elastic plastic behavior and plastic strain occurs only in the reverse 
cyclic plastic zone (cylinder domain with a radius r R ).

In  both  cases  of  plane  stress  and  plane  strain,  there  is  unrestricted  plastic  flow 
through the thickness direction in the cracked specimen. With alternating plasticity in 
the reverse cyclic plastic zone the mean stress will tend toward to zero (i.e. mean stress 
relaxation).  Also  in  the  thermo-mechanical  problem,  only  the  elastic  domain  is 
considered and the boundary condition in the reverse cyclic plastic zone radius is that 
the radial stress is equal to zero.
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Further, outside of the reverse cyclic plastic zone since the constitutive behavior of 
the material is supposed to be elastic, it is expected in first approximation that the basic 
equations of thermo-elasticity will govern. The equilibrium equation is:

r
∂σ r

∂ r
+σ r−σθ=0 (7)

For which σ r  is the radial normal stress and σθ  is the circumferential normal 
stress. The isotropic elastic stress strain law gives:

εr=
∂ur

∂ r
=
σ r

E
−ν (σθ+σ z

E )+αϑ(r ,t )

εθ=
1
r
∂uθ
∂θ
+

ur

r
=
σθ
E
−ν (σr+σ z

E )+αϑ(r , t) (8)

εz=
∂ uz

∂ z
=
σ z

E
−ν (σr+σθ

E )+αϑ(r , t)

where E is the modulus of elasticity, ν the Poisson ratio and α is the linear coefficient of 
thermal expansion.

Two particular stress strain cases are considered for the elastic region: (i) plane stress 
where the normal stress (σz) is equal to zero and (ii) plane strain where the strain (εz) is 
equal to zero. In both cases the material behavior outside the reverse cyclic plastic zone 
is  modeled  by an isotropic thermo-elastic  stress  strain  law.  This  set  of  equations  is 
reduced to the same form, for example for plane stress they are reduced to the first two 
with σz set equal to zero. For plane strain upon solving the last stress-strain equation for 
σz and substituting it into the first two the same form is found with altered elastic and 
thermal constants. The plane stress form will be adopted here for simplicity and the 
plane strain alteration will only be noted in some final results. The plane stress case 
gives:

∂ur

∂r

ur

r
=
σr

E
−ν
σθ
E
+αϑ(r ,t )  and 

ur

r
=
σθ
E
−ν

σ r

E
+αϑ(r ,t ) (9)

From the second of these, multiplying by r  and differentiating, results in 

∂ur

∂r
=
∂

∂ r [r ( σθE
−ν

σ r

E
+αϑ(r ,t ))] (10)

Equating  this  to  the  first  equation  of  the  two above and rearranging,  as  well  as 
introducing the equilibrium equation to eliminate σθ, gives:
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r
∂

2
σr

∂ r2 +3
∂σ r

∂ r
=−α ' E '

∂ϑ

∂ r
(11)

where E'=E and α'=α for plane stress, whereas E '=
E

1−ν2  and α '=α(1+ν)  for 

plane strain.

From equation (6), we find

∂ϑ(r ,t )
∂ r

=
−qe

−r 2

4at

2πλ r
(12)

The equilibrium equation of the thermo-mechanical problem is then 

r
∂

2
σr

∂ r2 +3
∂σ r

∂ r
=

qα ' E ' e
−r 2

4at

2πλ r
. (13)

An analytical solution of the thermo-mechanical problem

Ranc et al. [6] have shown that the solution of the differential equation (11) is 

σ r(r ,t )=
α ' E ' aq
π λ [ t

2r 2 e
−r2

4at+
1

8a
Ei ( r2

4at )]+ F
r 2+G (14)

with  F and  G two  integration  constants.  Equation  (7)  allows  one  to  find  the 
circumferential stress: 

σθ(r , t)=
−α ' E ' aq
π λ [ 12 te

−r2

4at

r 2 −
1
8a

Ei [−r 2

4at ])− F

r2+G (15)

It is possible now to use the mechanical boundary conditions in order to express the 
two constants F and G. Because there is no thermal stress when r tends to infinity and 
because of the mean stress relaxation in the reverse cyclic plastic zone, when t>0, the 
boundary conditions are, 

lim r→+∞ σ r(r , t)=0  and σ r(r R , t)=0 (16)

The first previous condition implies G=0. With equation (14), the second condition 
allows one to express the constant, F, as follows, which is in fact a function depending 
on time to respect the boundary conditions whatever the time t :
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F=
α ' E ' a q r R

πλ [−t
2

e
−r R

2

4at

r R

−
r R

8a
Ei (−r R

2

4at )] (17)

Then, the radial and the circumferential normal stresses are:

σ r(r ,t )=
α ' E ' aq
πλ r2 [ t

2
(e
−r 2

4at−e
−r R

2

4at )+ 1
8a (r2 Ei (

−r 2

4at
)−r R

2 Ei (
−r R

2

4at
))] (18)

σθ(r , t)=
−α ' E ' q a
πλ r 2 { t2 (e

−r 2

4at−e
−r R

2

4at )+ 1
8a [−r R

2 Ei (−r R
2

4at )−r 2 Ei (−r 2

4at )]} (19)

These  radial  and  circumferential  normal  stresses  are  then  calculated  with  the 
following typical values for steel: a Young modulus E=210 GPa, a Poisson ratio ν=0.29, 
a thermal expansion coefficient of the material α=1.2×10-5 K-1, and the line heat source 
is taken equal to the unity (q=1 W.m-1). The figure 3 gives for rR=4 µm the evolution of 
the radial stress as it varies with the radius for two times t=1 s and t=10 s. Note that the 
radial stress is always negative because the material is under compression due to the 
thermal expansion of the material near the crack tip. The figure 3 is an enlargement of 
the curve around the reverse cyclic plastic zone. This figure shows a minimum of the 
radial stress. After t=1 s and t=10 s, the minimum radial stresses are respectively equal 
to −2.2x10−2 MPa and -1.9×10-2 MPa and the respective positions from the center of 
the reverse cyclic plastic zone (r = 0) are 17 µm and 16 µm for a unit line heat source

 
-a- -b-

Figure 3: The distribution of the radial normal stress for various times for a unit heat 
source q = 1 Wm-1 and rR = 4 µm; a) general view, b) enlargement near the reverse 

cyclic plastic zone.
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The figure 3a shows the evolution of the circumferential stress along a radial axis for 
two different times. Near the reverse cyclic plastic zone (rR=4 µm) the circumferential 
stress  is  negative  (Figure  4)  because  the  temperature  is  high  and  through  the 
circumferential  direction,  the  material  is  under  compression  due  to  the  thermal 
expansion and the constraint effect. Further from this zone, the temperature is lower and 
the  circumferential  stress  becomes  positive  (tension)  due  to  the  confinement  of  the 
material near the crack tip (Figure 4). For times t=1 s and t=10 s the circumferential 
stress in the edge of the reverse cyclic plastic zone is respectively equal to -0.056 MPa 
and -0.065 MPa for a unit line heat source. It has to be pointed out that all the previous 
stress values are small because they are computed for a unit heat source q  (per unit 
length of crack front), but the stresses are proportional to q.

 
-a- -b-

Figure 4: The circumferential stress distribution at various times for a unit heat source 
q=1 W.m−1  and rR = 4 µm; a) general view, b) enlargement near the reverse cyclic 

plastic zone.

THE EFFECT OF THE THERMAL STRESSES ON THE STRESS INTENSITY 
FACTOR UNDER CYCLIC LOADING

Now within the heterogeneous stress field due to the thermal stresses, if we consider the 
previous theoretical case of an infinite plate with a semi-infinite crack along a radial line 
from rR  to  +∞,  the associated stress intensity factor,  KI,temp,  due to  the temperature 
gradient can be determined from the wedge force (Green's function) solution (see [10] 
page 87) as:

K I , temp( t)=√ 2
π
∫r R

∞ σθ(r , t)

√r−r R

dr . (20)

From equations (19) and (20), the stress intensity factor due to thermal stresses is 
expressed by:
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K I , temp( t)=
−α ' E ' q

8π λ √ 2
π [∫r R

∞ 4at

r
2
√r−r R

(e
−r 2

4at−e
−r R

2

4at )dr ...

...+∫r R

∞ 1
r2
√r−r R

(−r R
2 Ei (−r R

2

4at )−r 2 Ei (−r 2

4at )) dr ] (21)

After integration (with the help of the Mathematica software) it becomes:

K I , temp( t)=
α ' E ' q

80λ √ 2
π {40√r R+

20at(e
−r R

2

4at−1)

r R
3/2

+5√r R Ei(−r R
2

4at ) ... (22)

...+
10(at )1/4

Γ( 7
4 )

(−3 2 F2[(−1
4

,
1
4 ) ,(

1
2

,
3
4 ) ,(

−r R
2

4at )]+ 2 F 2[( 1
4

,
3
4 ) ,(

1
2

,
7
4 ) ,(

−r R
2

4at )]) ...

...−
8r R

(at)1/4Γ( 1
4 )
(5 2 F 2[( 14 ,

3
4 ) ,(

5
4

,
3
2 ) ,(

−r R
2

4at )]+ 2 F 2[( 34 ,
5
4 ) ,(

3
2

,
9
4 ) ,(

−r R
2

4at )])}
with the hypergeometric function:

p Fq ( {a1 , ... , a p } ; {b1 ,... , bq }; z )=∑k=0

+∞ (a1)k ...(a p)k
(b1)k ...(bq)k

zk

k !
, (23)

where (a )k=
Γ(a+k )
Γ(a)

=a(a+1)(a+2) ...(a+k−1)  is the Pochhammer symbol and 

Γ( x)=∫0

+∞

u x−1 e−x du  the  Euler  Gamma  function.  For  instance  in  our  case 

2 F 2 ( {a1 , a2 } ; {b1 ,b2 } ; z )=∑k=0

+∞ (a1)k (a2)k
(b1)k (b2)k

z k

k !
.

The evolution of KI,temp (the thermal correction on KI) versus time is presented in 
Figure  5  for  a  unit  line  heat  source  (q=1 Wm-1)  and the  following typical  material 
characteristics:  ρ=7800 kg.m-3,  C=460JK-1kg-1,  λ=52 Wm-1K-1,  α=12.10-6 and 
E=210 GPa. For instance, after times of 10s and 100 s the thermal correction on the 
stress  intensity  factor  is  respectively  -1.2×10-3 MPa√m  and  -2.1×10-3 MPa√m  for  a 
reverse cyclic plastic zone radius of 4 µm and q=1 Wm-1.  These values are negative 
because  the  temperature  field  generates  compressive  circumferential  normal  stresses 
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near the crack tip.

Figure 5 shows the evolution versus time of the stress intensity factor KI,temp due to 
the temperature gradient for various values of the reverse cyclic plastic zone radius. 
This illustrates that KI,temp is not very sensitive to the size of the reverse cyclic plastic 
zone. This is due to the very large dimensions of the plate (infinite plate), compared to 
the size of the reverse cyclic  plastic  zone.  The thermal  boundary conditions do not 
consider the heat exchange between the specimen and the environment that is the reason 
why no  thermal  equilibrium is  reached  even  after  a  long  time  (Figure  4).  Further 
theoretical work in the analytic solution has to be done to take this phenomenon into 
account  for  being  representative  of  small  specimens  (finite  dimensions)  for  which 
thermal  equilibrium is  reached  when  a  fatigue  crack  growth  test  is  running  during 
several hours in laboratory. This is the case of slow fatigue crack growth typically when 
the range of the stress intensity is close to the threshold.

Figure 5: The stress intensity factor KI,temp due to thermal stresses versus time for 
different radius of the reverse cyclic plastic zone.

As written before, due to the compressive thermal stresses around the crack tip, it has 
been shown that the stress intensity factor during a fatigue loading has to be corrected 
by  the  factor  KI,temp.  This  factor  determined  by  equation  (22)  would  be  a  value 
superimposed on the usual stress intensity factor due to the fatigue cyclic loading noted 
KI,cyc in mode I. 
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KI(t)=KI,temp(t)+KI,cyc(t) (25)

KI,temp varies with time and can be considered as constant for long time. In the very 
beginning  of  loading,  the  value  of  KI,temp is  small  compared  with  KI,cyc and 
Δ K I ( t)≈ΔK I , cyc . There is also no significant effect of the temperature on the range 

of  the  stress  intensity  factor  per  load  cycle.  For  long  time  (t>>0  ), KI,temp can  be 
considered as constant during a loading period. Consequently the temperature has no 
effect on Δ K I ( t)  but it has an effect on KI,max and KI,min:

K I , max=K I ,cyc , max+K I ,temp and K I , min=K I , cyc , min+K I ,temp (26)

where KI,min and KI,max are the minimum and the maximum value of KI(t) over a loading 
period.  However,  KI,temp can  affect  crack  closure  by  changing  the  load  ratio 

RK=K I , min/K I ,max . The ratio RK is affected by the temperature correction:

RK=
K I ,min

K I ,max

=
K I ,cyc ,min+K I , temp

K I ,cyc ,max+K I , temp

≠
K I ,cyc ,min

K I ,cyc ,max
(27)

The evaluation of this correction needs a precise quantification of the heat source 
associated with the plastic dissipation and the thermal boundary conditions at the border 
of the plate. Experimental measurements of the temperature field, for instance by using 
pyrometry technique, need to be carried out in this way in a next study.

In this paper it has been shown that the effect of the heat source at the crack tip 
(within the reverse cyclic plastic zone) on the stress intensity factor is proportional to 
the line heat source q .  The quantification of this is a key factor which is probably 
depending  on  the  material  behavior  (plasticity,  visco-plasticity  if  any).  Another 
consequence of the thermal stresses is due to the fact that q  is proportional to Δ K4  
[7,8]. When Δ K  is changing significantly, for instance from the threshold 5 MPa√m 
up to 50 MPa√m (10 times more), the effect on the heat source is 104 times! The effect 
on the correction due to thermal stresses is thus significant. Furthermore, since the value 
of q is also proportional to the loading frequency, a frequency effect on the crack growth 
may be also linked with the heat source. This opens interesting investigations for further 
studies.

We have to keep in mind that the problem solved here assumed that the heat source is 
motionless. This means that the proposed solution is physically correct for slow crack 
growth. This is the case when Δ K  is close to the threshold value. For instance, with 
dc/dN~10-9 m/cycle at a loading frequency between 1 Hz up to 100 Hz the velocity of 
the crack tip  (i.e.  heat  source velocity)  is  between 10-6 mm.s-1 and 10-4 mm.s-1.  This 
means according to equation (4) that for a crack with a characteristic length between 
1 mm and 10 mm that the Peclet number is small compare to the unity. In such a case, 
the motionless heat source hypothesis is correct and all the proposed results correct too. 
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According to  the  authors,  considering  the  effect  of  thermal  stresses  may be  a  very 
important point for studying the crack growth close to the threshold and for the physical  
phenomena including crack closure and frequency effect.

CONCLUSION

The temperature variation field outside the reverse cyclic plastic zone in an infinite plate 
with a semi-infinite crack under a remotely applied tensile force (mode I)  has been 
calculated analytically.  This temperature field also applies to a large central  through 
crack, as an estimation near each crack tip. It shows that due to the temperature gradient 
outside the plastic zone, a local compressive stress field is created. This may participate 
in  the crack closure phenomenon.  The mode I  stress  intensity factor  has  then  been 
calculated  by  taking  into  account  this  field.  Both  the  effective  range  of  the  stress 
intensity factor (considering closure), the maximum and minimum values of KI and the 
stress intensity ratio RK=K I , min/K I ,max  may be affected by the thermal stresses. The 
proposed analytical solution shows that the correction on the stress intensity factor due 
to the heterogeneous temperature field around the crack tip is proportional to the heat 
source  within  the  reverse  cyclic  plastic  zone.  Experimental  investigation  has  to  be 
carried out to quantify the heat source at the crack tip which is clearly a key factor in 
fracture mechanics. Further studies should also be carried out in thermomechanics to 
take into account the temperature field effect on fracture mechanics considerations.
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