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ABSTRACT. The state of stress in a structural component is generally influenced by 
both service loadings and mechanical effects due to production processes, such as 
residual stresses generated by inhomogeneous plastic deformations.  Sometimes the 
effect of residual stresses on the mechanical and fatigue properties is beneficial, 
sometimes it is detrimental.  Since the component failure can be caused by both applied 
and residual stresses, it is important to understand the role of residual stresses.  In the 
present paper the effect of residual stresses, due to the cold-drawing process, on the 
fatigue behaviour of a metallic cracked round bar with a V-shaped circumferential 
notch is examined.  The stress-intensity factors related to tension loading and to a 
residual stress field are numerically evaluated.  Then, the crack propagation under 
cyclic tension is analysed through a theoretical model, by also including the effect of 
residual stresses.  Such an effect is taken into account considering, for some values of 
residual stress severity, the actual stress ratio which is different from the nominal one 
due to cyclic tension only. 
 
 
INTRODUCTION 
 
Generally speaking, the stress field in a structural component is caused by both service 
loadings and manufacturing processes.  The stresses due to such processes, called 
residual stresses, are usually due to inhomogeneous plastic deformations produced by 
mechanical, thermic or chemical phenomena [1], and have a significant effect on the 
fatigue behaviour of structures.  Furthermore, the effect of possible stress concentrators, 
which can modify the stress field, has to be taken into account. 

Several authors have examined the fatigue behaviour of notched bars under different 
loading conditions [2-5], but only few studies have analysed the influence of the 
residual stresses [6, 7]. 

In the present paper, a cold-drawn round bar with a V-shaped circumferential notch 
(Fig. 1) is subjected to pulsating tension.  The axisymmetrical profile of the residual 
stress is numerically determined in the reduced cross-section of the bar (S-S in Fig. 1b), 
where an almond surface crack is assumed to exist.  The stress-intensity factors (SIFs) 
due to residual stresses and tensile loading are evaluated by employing: a 3-D FE 
model, the power series expansion of the stress field, the superposition principle. 

Then, the effect of the residual stresses on the fatigue behaviour of such a notched 
bar is examined.  The actual stress ratio, evaluated by taking into account both the tensile 
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Figure 1.  (a) 3-D view of the round bar with a circumferential notch. (b) Geometrical 
details of the V-shaped notch profile. (c) Geometrical parameters of the surface crack 

assumed in the reduced cross-section S-S. 
 
 
stresses and the residual stresses, shows a non-uniform distribution on the crack front.  
The influence of the actual stress ratio on the fatigue crack propagation is considered by 
using the Walker equation [8], and the strong dependence of the propagation process on 
the residual stress field is quantified in terms of evolution of both surface crack shape 
and crack growth rate. 
 
 
DEFINITION OF THE PROBLEM 
 
The structural component being examined is a round bar with a V-shaped 
circumferential notch (Fig. 1) characterized by a depth c , an opening angle γ , a 
constant notch root radius ρ  (Fig. 1b).  The diameter of the bar is equal to 0D  in an 
unnotched cross-section and equal to D  in the reduced cross-section S-S (Fig. 1b).  The 
relative notch depth 0/ Dc=δ  and the dimensionless notch root radius 0/ Dd ρρ =  are 
assumed to be equal to 0.2 (i.e. 06.0 DD = ) and 009.0 , respectively, whereas the 
opening angle γ  is equal to °60 . 

The stress concentration factor (SCF) under tension, determined through a finite 
element analysis, is equal to 13.6, =FtK , which is in a good agreement with the value 

01.6, =FtK  obtained by Noda e Takase [9].  An almond surface crack with an 
elliptical-arc shape is assumed to exist at the notch root (Fig. 1c).  The crack 
configuration is characterized by the relative crack depth Da /=ξ  of the deepest point 
A and by the flaw aspect ratio ba /=α .  In the following, ξ  is made to vary from 1.0  
to 7.0 , whereas the parameter α  ranges from 0.0  to 2.1 .  The generic point P along 
the crack front is identified by the dimensionless coordinate h/* ζζ =  (Fig. 1c). 

The structural component is assumed to be subjected to an axisymmetrical residual 
stress field, due to cold-drawing process.  Such a stress field, found out in numerical 
and experimental observations [10-13], is produced by pulling the bar through a die. 

(c)

(a) 

(b)
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COLD-DRAWING RESIDUAL STRESSES 
 
The longitudinal residual stress data for an unnotched bar ( ∞=dρ ), determined by 
Elices [13] through the neutron and X-ray diffraction technique, are shown by solid 
symbols in Fig. 2a, where the radial coordinate r  is normalized with respect to the bar 
radius 0R  (i.e. 0/* Rrr = ) and the residual stress with respect to the residual stress value 
at the bar centre (i.e. )0(* )()()( == rresIresIresI σσσ ).  By interpolating such data through 
a best fitting polynomial, a continuous curve is obtained (Fig. 2a). 

Such an axisymmetrical stress distribution has been used to numerically assess the 
residual stress distribution in a notched bar ( 009.0=dρ ).  The dimensionless residual 
stress profile, in correspondence to the reduced section S-S, is reported in Fig. 2b (in 
such a case, the dimensionless radial coordinate is given by Rrr /* = ). 

A generic axysimmetrical residual stress distribution  given by 
 

)(*)0()( )()()( rrr resIresIresI σσσ ⋅==  (1)
 

can be approximated through a power series expansion as follows: 
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where *r  is given by Rr /  ( R  is equal to 0R  for unnotched bar and to R  for notched 
bar), and the coefficients )(resiB  are expressed by the following equation: 
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Figure. 2.  Dimensionless residual stress distribution )(* resIσ   against  dimensionless radial 
coordinate *r  : (a) unnotched round bar; (b) notched round bar. 
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Different residual stress distributions are hereafter considered, by assuming the 
above stress patterns (Fig. 2) and varying the value of )0()(resIσ .  Their effects are 
quantified in term of SIF, and their influence on the fatigue behaviour is examined. 
 
 
RESIDUAL STRESS INFLUENCE ON SIFS AND ON STRESS RATIO 
 
In order to evaluate the SIF produced by a generic longitudinal residual stress 
distribution, the SIFs ( )(iIK ) related to elementary stress distributions 
( nr i

iI ,...,0i   ,*)()( ==σ ) acting on the crack faces are computed along the crack front 
and properly combined [14].  Such SIFs are evaluated by means of the quarter-point 
finite element nodal displacement correlation technique [15,16].  In a dimensionless 
form, they can be written as aKK iIiI ⋅= π/* )()( . 

A generic complex axisymmetrical stress distribution )()( rLIσ , perpendicular to the 
crack faces, can be approximated through a power series expansion as has been done for 
the residual stress (Eq. (2)), and the corresponding polynomial coefficients )(LiB  can be 

determined by applying Eq. (31) to )()( rLIσ . 
Since the superposition principle holds, the dimensionless SIFs corresponding to 

such a complex load distribution and to residual stresses can be approximated as [14]: 
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By defining the residual stress severity as )()( /)0( FrefresIs σσ=  where the subscript 
(F) indicates tension loading, the residual stress influence on the dimensionless total 
SIF, given by aKKK FrefresIFIresFI πσ )()()()( /)(* +=+ , can be appreciated, as is shown 
in Fig. 3.  In such a figure, the values of )(* resFIK +  at point A and point C on the crack 
front are plotted against the relative crack depth ξ  ( 5.01.0 ≤≤ ξ ), for a straight- and a 
circular-fronted crack, by assuming s  equal to 0.0 (pure tension), 0.5, 1.0. 

For unnotched bar with straight-fronted crack (Fig. 3a), the dimensionless SIF at 
point C increases by increasing the residual stress severity s .  At point A, it increases 
only for small values of the relative crack depth ( 4.0≤ξ ): for ξ  greater than 0.4, the 
influence of residual stresses becomes negligible.  For unnotched bar with circular-arc 
crack (Fig. 3b), the dimensionless SIF at point C increases by increasing the residual 
stress severity s , whereas the dimensionless SIF at point A can increase or decrease 
with the relative crack depth: as a matter of fact, a transition value of ξ , approximately 
equal to 0.3, can be observed. 

For notched bar (Fig. 3c and 3d), the dimensionless SIF at point C increases with the 
residual stress severity s .  On the other hand, by increasing s , the dimensionless SIF at 
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point A increases for 3.0<ξ  in the case of straight-fronted crack (Fig. 3c) and for 
2.0<ξ  in the case of circular-arc crack (Fig. 3d). 
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Figure 3.  Dimensionless total stress-intensity factor )(* resFIK +  against relative crack 
depth ξ , for different values of s :  (a, b) unnotched round bar and (c, d) notched round 

bar;  (a, c) straight-fronted crack and (b, d) circular-arc fronted crack. 
 

From the above discussion, it can be deduced that the effect of the residual stresses 
on the SIFs is remarkable and, therefore, a significant change of the fatigue behaviour of 
both unnotched and notched bars can also be expected by varying the value of the 
parameter s .  Since the present paper aims at investigating the effect of different 
residual stress distributions on the fatigue behaviour of round bars under constant 
amplitude cyclic tension, the actual stress ratio aR  needs to be evaluated: 
 

[ ] [ ])(*1/)(*)( )()( rsrsRrR resIresIFa σσ ⋅+⋅+=  
 

      (5)
 

where FR  is the nominal stress ratio of the cyclic tension, i.e. max)(min)( / FFFR σσ= , and 

)(Frefσ  in s  (see just after Eq.(4)) is assumed to be equal to the maximum stress max)(Fσ . 
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In Fig. 4, the actual stress ratio aR  is plotted against the dimensionless radial 
coordinate *r .  For both unnotched (Fig. 4a) and notched (Fig. 4b) bar, by increasing 
the parameter s  the actual stress ratio aR  increases in the outside part of the bar and 
decreases in the inner part of the bar. 
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Figure 4.  Actual stress ratio aR  against radial coordinate *r , for different values of s  and 
cyclic tension with 0.0=FR : (a) unnotched round bar; (b) notched round bar. 

 
 
FATIGUE CRACK PROPAGATION 
 
Now the fatigue behaviour under tension loading is examined through a two-parameter 
theoretical model [15], by also using the Paris-Erdogan equation [17] modified by 
means of the Walker relationship [8].  It has experimentally been observed [18] that the 
coefficient C  of the Paris-Erdogan equation is not only dependent on the material, but 
also on the stress ratio of the applied cyclic loading.  Many equations have been 
proposed to take into account the stress ratio effect [8, 19-21].  The empirical Walker 
equation modifies the Paris-Erdogan law as follows [8, 22]: 
 

[ ] m
IL KRCdNda Δ⋅= )(/     with   ( ) m

LL RCRC )1(
0 1)( β−−−=  

 

             (6)
 

where )( LRC  is the effective Paris-Erdogan coefficient for a generic stress ratio LR , 

0C  is )( LRC  for LR  = 0, and β  is the Walker exponent.  It has been found that, for 
positive stress ratio values, the exponent β  usually ranges from 0.3 to 0.8 ( 3.0=β  and 

8.0=β  produce a strong and a weak dependence on LR , respectively).  For negative 
stress ratio values, β  can be set equal to zero because only (max)IK  drives the crack [22]. 

The parameters 0C  and m  are here assumed equal to 101064.1 −⋅  and 2  (with dNda /  
in ]cycle[mm 1−⋅  and IKΔ  in ]mm[N 2/3−⋅ ) [23], and the exponent β  equal to 5.0 . 
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The diagrams of crack aspect ratio α  against relative crack depth ξ  are determined 
for two initial crack configurations, max)(Fσ  = 100 MPa, FR  = 0.0.  For unnotched 
( ∞=dρ , Fig. 5a) and notched ( 009.0=dρ , Fig.5b) bars, by increasing the residual 
stresses the curves tend to lower values of α  for a given value of ξ .  A remarkable 
dependence of the crack paths on the parameter s  can be observed. 
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Figure 5. Crack aspect ratio α  against relative crack depth ξ  (a, b) and relative crack 
depth ξ  against number of cycles N  (c, d)  in the case of unnotched bar (a, c) and 

notched bar (b, d) under cyclic tension, for two initial cracks and different values of s . 
 

Note that, in the case of notched bars (Fig. 5b), only the curves related to 0.1=α  are 
reported.  As a matter of fact, cracks with an initial crack aspect ratio equal to 0.0  tend 
to assume a sickle shape just after a low number of loading cycles. 

The crack depth evolution against the number of loading cycles is displayed in Fig.5.  
For unnotched (Fig. 5c) and notched (Fig. 5d) bar, the surface crack grows more rapidly 
in the case of high values of the residual stress severity s . 
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CONCLUSIONS 
 
In the present paper, the effect of residual stresses due to cold-drawing process on the 
fatigue behaviour of a metallic notched round bar with a surface crack has been 
examined.  Different residual stress distributions have been considered, and the bar has 
been assumed to be also subjected to cyclic tension.  The fatigue crack propagation has 
been analysed by using the Walker equation, in order to take into account the effect of 
the actual stress ratio. 

It has been observed that the residual stress field appreciably influences both the 
crack aspect ratio evolution and the crack growth rate.  In particular, the residual 
stresses being examined tend to accelerate the crack propagation phenomenon in the 
case of both unnotched and notched bars. 
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