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ABSTRACT. The numerical prediction of crack paths in brittle or quasi-brittle solids is 
difficult from a computational point of view, and non-uniqueness of the solution can 
occur.  To solve such a problem, several computational techniques have been proposed 
such as ad hoc remeshing strategies, strain softening in the context of plasticity, 
discontinuous finite elements.  In the present paper, a continuum finite element (FE) 
formulation to model the discontinuity of the displacement field in fracture occurring in 
brittle or quasi-brittle solids is proposed.  A homogeneous discontinuity is assumed to 
exist in a cracked finite element, and a new simple stress-based implementation of the 
displacement discontinuity is introduced by an appropriate stress field relaxation in 
order to simulate the mechanical effects of the crack.  The model requires the definition 
of crack-bridging stress laws.  Simple 2D fracture problems are solved to investigate 
some computational aspects of the proposed algorithm, such as the mesh independence. 
Finally, the developed numerical model is used to simulate experimental results. 
 
 
INTRODUCTION 
 
As is well-known, the numerical simulation of the mechanical behaviour of brittle solids 
or structures can be difficult because of the strain localisation due to crack formation, 
when the strength of the material is exceeded in some parts of the solid.  The formation 
of a discontinuity in a solid can produce computational instabilities or even problem 
divergence which can cause non-uniqueness of the solution [1-3]. 

Furthermore, the numerical simulation of the strain localisation phenomena usually 
shows a strong mesh-dependence [4], and some specific strategies or corrections to 
standard approaches must be introduced: remeshing, mesh adaptivity [1, 5-7], finite 
element enrichment [8, 9], use of interface elements [10, 11], discontinuous FE 
formulations [12-16].  Among such approaches, the discontinuous FE displacement 
field approach has shown to be a simple and useful tool. 

In the present paper, a stress-based finite element formulation is proposed to 
represent embedded discontinuities which usually occur in the fracture process of brittle 
or quasi-brittle solids and structures.  A new simple implementation of the mechanical 
effects of a discontinuous displacement field within an element is formulated.  By 
introducing an appropriate FE stress field correction at the Gauss point level, the 
mechanical effects of the opening and sliding stresses transmitted across the crack faces 
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can be represented in a way similar to that employed in standard plasticity-like FE 
numerical approaches.  The present formulation does not introduce discontinuous or 
modified shape functions to reproduce strain localisation, but it simply relaxes the stress 
field in an appropriate fashion by considering crack bridging and shearing laws to 
evaluate the normal and tangential stresses transmitted across the crack faces.  
Furthermore, the uncracked material is allowed to behave as a linear elastic or an 
elastic-plastic one. 

The proposed approach is presented in the context of a variational FE formulation.  
Then, the behaviour of brittle structures as well as the crack paths inside the material in 
2D problems are predicted.  Finally, some comparisons with literature and experimental 
results are discussed to assess the capability of this approach. 
 
 
DISCONTINUOUS FORMULATION 
 
The discontinuous displacement field in a solid Ω  (Fig. 1a) where a displacement 
discontinuity takes place along the line S   can be written as follows [12]: 
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where the total displacement field )(xδ  is written as the sum of the continuous )(xδ  and 
the discontinuous part )()()]]()[[()( xwxxδxxδ ⋅== HHd  (where )(xH  is the 
Heaviside jump function across the crack line, and )()]]([[ xwxδ =  is the discontinuity 
displacement jump vector across the line S ). The corresponding strain field is given by: 
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where sδ  is the Dirac delta function in S , ( )s•  denotes the symmetric part of ( )• , 
)(xεb  and )(xεu  are the bounded and unbounded part of the strains, respectively. 

By considering a finite element (Fig. 1b), in which a discontinuity occurs along a 
straight line S  crossing the element in a direction identified by the unit vector j  and 
centred in its geometrical centre C , the displacement field )(xu  can be written [12, 16]: 

[ ]wxNxδxNxu )()()()( +−+⋅= H  (3)

where the discontinuous part is given by [ ]wxNx )()( +−H .  The displacement jump 
vector is vuw += , where u  and v  are the displacements jumps normal and parallel to 
the crack line, respectively (Fig. 1b). 

The corresponding small strain field can be obtained from: 
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Figure 1. (a) Discontinuous displacement field in a 2-D solid; (b) Schematisation in a F.E. 

 
where )(xB  is the compatibility matrix.  In the above expression, the crack jump 
displacement vector )(xw  is unknown, and must be evaluated by taking into account 
the material cohesive crack bridging law for the normal and tangential stresses. 
 
 
VARIATIONAL FORMULATION OF DISCONTINUOUS F.E. 
 
The equilibrium problem can be stated through the following weak form [14]: 
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for any virtual displacement field *uδ  and corresponding strains and stresses 
( )***   *,* uσσuε δδδδδ ss ∇=∇= .  By introducing the FE notation, it can be written as: 
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Since the virtual displacements *  and  * δw δδ  are arbitrary, we can assume 

0δ0w == * and  * δδ  separately in eq. (6) and get the following expressions, after 
eliminating the arbitrary displacements *δδ  and the discontinuity vector *wδ : 
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or, in a compact form, after performing a static condensation: 
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As is stated above, the solution of the problem requires the knowledge of the crack 
jump displacement vector )(xw . 

When a crack starts, it is reasonable to assume that the strain state present in the 
finite element is “condensed” in a highly-localised strained area concentrated in a very 
narrow band (crack location), i.e. a discrete displacement jump can be assumed.  Let us 
consider the FE mean nodal displacement values across the crack, projected respectively 
in direction normal ( cu ) and parallel ( cv ) to the crack direction: 

( )[ ] ( )[ ] ncncccccc nvnuvu /     ,/       with , jδQiδQjivuw ⋅⋅=⋅⋅=⋅+⋅=+=     (9)

where nn  is the total number of element nodes, the matrix Q  is the nodal discontinuity 
matrix, δ  is the element nodal displacement vector. 
 

The nodal discontinuity matrix Q  is determined by observing which nodes of the 
finite element are in one or in the other side of the crack.  By referring to Fig. 1b: 
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To physically represent the presence of the crack, the stress state in the finite element 

must be modified in order to have exactly the stress cσ  and the stress cτ  transmitted 
respectively in direction perpendicular and parallel to the crack faces.  The stress state 
can be elastically-corrected as follows: 

( )[ ] ( )[ ] ( )ununsuurel ss δBCσδNCσδNCσσ ⋅⋅−=⋅⋅∇−=⋅∇−= : : : s
,

s
,  (11)

where σ  is the effective stress tensor, and ( )unsu s δδ ⋅=,  is a fictitious nodal 
displacement vector assumed to be proportional, through the coefficient ns , to the nodal 
displacement vector uδ .  Analogously, by introducing a fictitious displacement vector 

( )vssv s δδ ⋅=, , which is assumed to be proportional (through the coefficient ss ) to the 
nodal displacement vector vδ  obtained by considering the projection ( ) jjδδ ⋅⋅=v  of the 
current nodal displacement vector δ  on the direction j , the stress state becomes: 

( )[ ] ( )[ ] ( )vsvssvvrel ss δBCσδNCσδNCσσ ⋅⋅−=⋅⋅∇−=⋅∇−= : : : s
,

s
,  (12)

The normal stress nc,σ  and shear stress nc,τ   can be evaluated as follows: 

( ) ( )[ ] iiδBCiiσ ⋅⋅⋅=⋅⋅= suucnc ,,, ':σ ,        ( ) ( )[ ] jiδBCjiσ ⋅⋅⋅=⋅⋅= svvcnc ,,, ':τ  (13)
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where 'B  is the compatibility matrix evaluated at point C .  The effective normal and 
shear stresses, ne,σ , ne,τ , acting on the same crack plane but produced by the modified 
stress tensors  nrel ,σ  and srel ,σ , are expressed as follows: 

( ) iiσ ⋅⋅= nrelne ,,σ ,          jiσ ⋅⋅= )( ,, srelnsτ  (14)

By imposing that )(, ccne uσ=σ  and )(, ccne uττ = , the correction factors ns , ss  can be 
determined by writing the corrected stress state at point C : 
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and the stress tensor correction (12) becomes 
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The above stress-based formulation of the discontinuous displacement field can be 
reinterpreted by a variational approach considering Eq. (5).  From eq. (16), we have: 
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Since the variation of the displacement field is arbitrary, we obtain: 
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From eqs (15), we have: 
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and equation (18) can be rewritten as follows:  
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It can be observed as the last espression in eq.(19) is similar to eq.(3).  The discontinuity 
vector  svsusw ,,, δδδ +=   must be evaluated by an iterative process summarised in eq. 
(19). 
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Crack bridging laws 
A cohesive-friction law for the cracked material is assumed in order to simulate the so-
called crack process zone.  The transmitted stresses are described by a decreasing 
function of the relative crack face displacement cu .  A decreasing exponential law is 
adopted for )( cc uσ  [14, 16] and the shear stress )( cc uτ : 
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where tf  is the maximum tensile strength, 0u  is the lower crack opening limit at which 
the bridging process occurs, fG  is the fracture energy of the material [18], and cr is the 
crack surface roughness.  Equation (21) is governed by the fracture energy of the 
material, fG , which represents the dissipated energy per unit crack surface: 
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Convergence requirements  
Since the non-linear computational process involves the evaluation of the crack effects, 
some appropriate convergence requirements must be considered.  The evaluation of the 
bridging stress is based on the knowledge of the crack opening (CO). In order to control 
the crack opening convergence, the following crack opening tolerance is introduced: 

)()1()( / i
c

i
c

i
cu uuutol

c

−−=  (23)

where )1()( , −i
c

i
c uu  are the CO displacements at the iteration i and i-1, respectively. 

 
 
NUMERICAL APPLICATION 
 
The algorithm described in the previous sections has been implemented in a non-linear 
2-D FE code developed by the authors.  
 
Single-edge notched beam under four-point shear 
A four-point shear loaded single-edge notched beam is examined.  Such a configuration 
has been used by several Authors as a benchmark test for numerical analyses [14].  The  
geometrical parameters of the structure and two FE discretisations are displayed in Fig. 
2a, c (sizes in mm).  A beam thickness equal to 0.1 m is adopted and a plane stress 
condition is assumed.  The mechanical parameters of the material are: Young modulus 

GPa 35=E , Poisson’s ratio 15.0=ν , ultimate tensile strength MPa 8.2=tf , fracture 
energy N/m 100=FG .  A linear-elastic behaviour of the beam is firstly assumed. 

The analysis is performed under displacement control.  The crack mouth sliding 
displacement d  (CMSD, Fig.2f) is evaluated and represented against the vertical bottom 

1164



applied load P  in Fig. 2e, together with some results taken from the literature [12, 13]. 
As can be observed, the load vs CMSD results are in satisfactory agreement with the 

literature results even if some differences can be appreciated in the decreasing branch of 
the numerical curves.  In Fig. 2e the elastic-plastic case is also shown: the Drucker-
Prager plasticity criterion is assumed for the uncracked material with tension 
(compression) yield stress equal to MPactY )28(  8.2)(, =σ , respectively and hardening 
equal to 0=H  (perfect plasticity).  As can be observed, the plastic behaviour slightly 
modifies the load-CMSD curve which has a lower peak with respect to the elastic cases. 
In Fig. 2b, d, expected crack paths are reproduced by the numerical simulations for the 
two meshes. 
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Figure 2. Single-edge notched beam under four point shear: (a) discretisation with 301 4-noded 
bilinear elements and 343 nodes; (c) discretisation with 660 triangular elements and 378 nodes. 

(b) Crack path for mesh (a); (d) crack path for mesh (c).  Load P vs vertical relative crack 
displacement (e) and detail of relative crack displacement measurement (f). 

 
CONCLUSIONS 
 
A new continuous finite elements (FE) formulation to simulate strong discontinuity 
problems, such as the fracture process in brittle or quasi-brittle solids, is herein 

d
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presented.  A new stress-based implementation of the discontinuous displacement field 
is proposed by introducing an appropriate stress relaxation to simulate (as usually 
occurs in classical elastic-plastic FE formulation) the mechanical effects of the cohesive 
crack in fractured solids or structures.  The proposed formulation does not need special 
discontinuous or modified shape functions to reproduce the discontinuous displacement 
field, but it simply considers the mechanical (i.e. static) effects of the crack on the body.  
Both linear elastic and elastic-plastic behaviour of the non-cracked material are 
considered.  The proposed formulation is applied to some 2D problems to assess the 
capability of the algorithm for simulation of Mode I or mixed Mode I+II fracture 
problems.  The proposed stress-based discontinuous FE formulation gives us results in 
good agreement with the predictions determined through the classical discontinuous 
displacement FEs or by experimental tests.  Further, it is simple and computationally 
economic, and preserves the well-known features of the classical elastic-plastic FE 
formulation. 
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