
Tensile Cracking Behaviour of Strain-Hardening Cement-
Based Composites using a Micromechanical Lattice Model 
 
 
Andrea Carpinteri, Roberto Brighenti, Andrea Spagnoli, Sabrina Vantadori 
 
Department of Civil-Environmental Engineering and Architecture, University of Parma, 
Viale Usberti 181/A, 43100 Parma, Italy; Fax: +39 0521 905924; E-mail: 
spagnoli@unipr.it 
 
 
ABSTRACT. The crack paths in strain-hardening cement-based composites under 
tensile loading are simulated using a two-dimensional lattice model.  A regular 
triangular lattice model (formed by truss elements) accounting for the actual multiphase 
meso-scale structure of the material is developed.  The trusses are assumed to have a 
linear elastic behavior in compression, whereas in tension a linear elastic behavior up 
to a first cracking stress is followed by an inelastic post-cracking curve.  Some 
numerical results related to tensile specimens are presented in order to investigate the 
influence of microstructure characteristics of the material on its ductility. 
 
 
INTRODUCTION 
 
Strain-hardening cement-based composites (also called pseudo-ductile cementitious 
composites or Engineered Cementitious Composites, ECC), a special class of high-
performance fiber-reinforced cementitious composites, have been developed to achieve 
specific composite performances which can be designed on the basis of the 
micromechanics of the material [1-3].  Under tensile loading, in contrast to normal 
concrete where a single unstable crack develops, ECC develop multiple stable micro-
cracks bridged by fibers.  Consequently, tensile stress-strain curves of ECC exhibit a 
strain-hardening response with a superior ductility (ultimate strain up to 8%, with a 
certain degree of scattering), which is several hundred times that of normal concrete [4]. 
The multiple micro-cracking behavior of ECC is strongly dependent on the fiber crack 
bridging law, in relation to the so-called steady-state (SS) condition for crack 
propagation [5], and on the degree of heterogeneity in the material, in relation to the 
condition for crack initiation.  Typically, crack initiation sites in ECC material are at 
material flaws, which are voids (bubbles of entrapped air) in the majority of cases. 
Consequently, crack initiation behavior is influenced by the size and spatial distribution 
(both factors are random in nature) of voids in the material [6].  Note that SS cracks are 
characterized by a flat profile, and the condition for SS cracking is (see [5]): 
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where fG  = fracture energy of the matrix,  σ0 = peak stress of the fiber crack bridging 
law, w0 = crack opening displacement at the peak stress of the fiber crack bridging law. 

Some theoretical models are available in the literature to describe the tensile 
behaviour of ECC (e.g. see [7,8]).  However, the detailed links between material 
microstructure and composite performance requires further investigations, for instance 
through micromechanical models such as lattice models [9].  In the present paper, the 
crack paths in ECC under tensile loading are analysed using a two-dimensional lattice 
model [10,11].  A regular triangular lattice model (formed by truss elements) accounting 
for the actual multiphase meso-scale structure of the material is developed.  The trusses 
are assumed to have a linear elastic behavior in compression, whereas in tension a linear 
elastic behavior up to a first cracking stress is followed by a linear inelastic piecewise 
post-cracking curve with softening branches.  Some numerical results for ECC tensile 
specimens are presented along with those for a standard Fiber-Reinforced Cementitious 
Composite (FRCC) in order to investigate the influence of void distribution in the 
material on its ductility. 
 
 
THE LATTICE MODEL 
 
A two-dimensional lattice is adopted to discretize the continuum model of the material. 
Such a lattice is regular triangular (i.e. with hexagonal unit cells), and truss elements are 
used.  The length l of the truss elements dictates the level of the discretization (Fig. 1). 
The Young modulus of the truss elements in the lattice model determines the stiffness 
of the continuum discretized through the lattice.  The relationship between the Young 
modulus of the truss ( E ) and that of the continuum ( E ) is given by [12]: 
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where A is the cross-sectional area of the truss elements.  From now onwards we use the 
following notation: a bar above the symbol means that the quantity is related to truss 
elements of the lattice model, whereas the plain symbol means that the quantity is 
related to the continuum model.  The adopted lattice of truss elements enforces a 
Poisson ratio of the continuum equal to 1/3 [9].  Considering a plane stress field acting 
in the continuum (with the 3 components xyyx τσσ ,,  in the xy frame), the following 
transformation rule for stresses can be derived [10]: 
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where )1(σ , )2(σ  and )3(σ  are the axial stresses acting in the trusses. 
In the continuum model, the tensile behaviour of a fiber-reinforced cementitious 

composite can be described according to the cohesive crack approach (e.g. see Ref. 

1152



[13,14] also in relation to localization problems which can be encountered in cohesive 
crack models).  Hence, the stress-strain curve is the result of the contribution of three 
constituting laws: the constitutive law of solid concrete (bulk material), assumed to be 
linear with Young modulus in tension equal to that in compression; the crack bridging 
law of plain concrete; the crack bridging law due to fibers.  The resulting stress-strain 
curve is characterized by a perfectly elastic behaviour in compression; the tensile 
behavior is elastic up to a first cracking stress, and a linear piecewise postcracking curve 
with softening branches follows. 

 
Figure 1. The unit cell of a regular triangular lattice. 

 
With reference to the lattice model, under uniaxial stress condition  the stress in the 

truss parallel to the loading axis is equal to ( )σσ )2(3 Al=  (e.g. see in Eq. 3 the stress 
in the truss (1) when x is the loading axis).  Accordingly, the first cracking stress tf  of 

the truss is assumed to be equal to ( ) tfAl )2(3 , where tf  is the first cracking stress of 
the continuum.  The same rule is applied for the peak stress σ0 of the crack bridging law 
due to fibers ( ( ) 00 )2(3 σσ Al= ).  The strain elε  of the truss at the elastic limit (strain 
at the first cracking stress) is equal to Eft .  

In line with the cohesive crack approach, the area under the stress σ  against crack 
opening w  curve (characterized by a first cracking stress tf  and an ultimate crack 
opening uw ) is equal to the Mode I fracture energy fG  (hence, for a linear curve 
σ against w , we have tfu fGw 2= ).  This concept can be translated to the truss 
elements of the lattice model. Hence, the ultimate cracking strain uε  is given by: 
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where fG  is the Mode I fracture energy of the truss, and can be determined from the 
continuum counterpart following an energy conservation argument (that is, the energy 
dissipation at surface of the crack in the continuum is lumped at the cross-sectional area 
of the truss).  Hence, by considering the influence area (equal to 3l ) assigned to a 
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truss submitted to a pure Mode I loading (e.g. see the truss (1) in Fig. 1, submitted to the 
uniaxial stress xσ ), we have: 
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The characteristic cracking strain values of the crack bridging curve due to fibers can 
be obtained by smearing the crack opening along the length of the truss, namely: 
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where 0w  = crack opening at the peak stress of the crack bridging law due to fibers; 

fuw ,  = ultimate crack opening of the bridging law due to fibers.  Note that typically 

fuw ,  is taken to be equal to a half the fiber length [15].  Finally, the resulting stress-
strain curve in the truss elements of the lattice model (see Fig. 2) can be obtained once 
the following values of stress/strain are computed: 
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where the strains 1ε  and 2ε  above are the sum of elastic strains ( E1σ  and E2σ ) and 
cracking strains ( 0ε  and uε ).  If, at a certain load step, the tensile strain ε  in the truss is 
higher than elε , an iterative procedure up to convergence is performed using a secant 
stiffness approach ( )(iE  is the secant Young modulus after convergence at the i-th load 
step, see Fig. 2). 

The modeling of material heterogeneities at the meso-scale level is carried out 
following an automatic procedure.  We consider synthetically-generated microstrutures 
of the material where the particles of each phase are assumed to be circular.  The size 
distribution of the particles for each phase follows statistics (e.g. with a Gaussian or 
uniform Probability Density Function, PDF), whereas the spatial distribution of the 
particles is assumed to be characterized by a uniform PDF.  Then, a regular triangular 
lattice is laid over the synthetic microstructure so that different mechanical properties 
are attributed to each truss element of the lattice depending on the region (phase) into 
which the element is located.  In the following, the heterogeneity of the examined 
cementitious composites (which do not contain coarse aggregates) is analysed at the 
meso-scale level by treating the material as a 2-phase composite with mortar (cement 
paste or matrix) and voids of entrapped air.  Therefore, matrix and void elements are 
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considered in the lattice model. 
 

 
Figure 2. The resulting stress-strain curve (not to scale) in the truss elements of the 

lattice model ( )(iE  is the secant Young modulus in the cracking stage at the i-th load 
step) in a typical case of ECC (Engineered Cementitious Composite). 

 
 
SIMULATIONS 
 
A rectangular specimen under tensile load acting in the direction of the major axis is 
analysed.  The tensile load is applied under displacement control along the minor sides 
of the specimen.  The aim of the simulations is to investigate the tensile ductility of 
ECC with reference to its multicracking features.  For comparison, a standard FRCC 
(for which the condition of SS cracking, see Eq. 1, is not fulfilled) is analysed. 

The volume fraction of voids is taken as equal to 7%, and the void diameter range 
minmax DDD −=Δ  varies in the interval 1 to 5 mm.  A Gaussian PDF for the diameter 

distribution of voids, such that there is a 95% probability of occurrence in the range 
DΔ , is adopted. 
The input parameters for FRCC and ECC are: E = 20GPa, ft = 5MPa, Gf = 12J/m2, wu 

= 4.8μm, σ0 = 6MPa, wu,f = 6mm (the values related to crack-bridging law due to fibers 
are typical of an ECC containing 2% by volume of polyvinyl alcohol fibers with a 
length equal to 12mm).  The value of the crack opening w0 is equal to 2 and 20 μm for 
FRCC and ECC, respectively. This is to ensure the SS crack growth for ECC (as a 
matter of fact, assuming a linear piecewise fiber crack bridging law σ-w, the inequality 
of Eq. 1 is fulfilled), but not for FRCC. The material parameters of the truss elements in 
the lattice model can be obtained using Eqs 2 to 7 for the adopted lattice size l equal to 
1mm.  A negligible value of stiffness for the void elements is assumed. 
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In a series of simulations, the maximum diameter of voids is kept constant and their 
diameter range DΔ  is made to vary.  Then, a series of simulations where DΔ  is kept 
constant is performed. A summary of the considered diameter range of voids is reported 
in the table displayed in Fig. 4. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Void distribution for diameter range equal to: (a) 0.5 to 5 mm; (b) 4 to 5 mm. 

 
Figure 4 shows the stress-strain curves for FRCC and ECC with all the void 

distributions being considered. Firstly, the superior ductility of ECC is clearly 
demonstrated by the curves. Such a different strain-hardening behaviour of ECC as 
compared to the softening one of FRCC, well-known from experiments, is hence fairly 
well described in the simulations by the present lattice model. Then, it can be noted that 
the peak stress is slightly affected by the void distribution in both FRCC and ECC. On 
the other hand, the strain at peak stress is marginally affected by the void distribution in 
FRCC, while the opposite occurs in ECC.  In more detail, we can see that strain 
ductility in ECC tends to increase as the minimum void size increases. 

Multiple cracking, which is responsible for the higher ductility of ECC, is also well 
simulated by the present lattice model. As a matter of fact, Fig. 5 reports, for a sample 
case, the contour plots in the deformed mesh of the damage variable EE i)(1−  ( )(iE  is 
the current secant Young modulus) at increasing overall strain. Red colour is used to 
indicate the truss elements where the damage variable is equal to unity. Hence, red 
regions illustrate the crack paths developing in the model: FRCC model shows a single 
main crack, while the cracking in ECC model is spread along the specimen height. 
 
 
CONCLUSIONS 
 
The crack paths in cementitious composites under tensile loading are examined using a 
two-dimensional triangular lattice model, which accounts for the actual multiphase 

(a) (b) 
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structure (at the meso-scale level) of the material. Treating fiber-reinforced cementitious 
composites as 2-phase composites (mortar matrix and air voids), tensile tests are 
simulated using the above model to analyse their tensile capacity.  The tensile strain 
capacity for a typical ECC is compared to that for a standard FRCC.  The adopted 
lattice model presents the advantage to describe void distribution in the material, which 
plays a major role in the tensile strain capacity of ECC.  The results of the simulations 
demonstrate that the tensile strain capacity is affected by void distribution only for 
ECC.  In more detail, the simulations show that the tensile strain at the peak stress tends 
to increase as the minimum size of the void range increases.  
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Figure 4. Comparison of overall σ-ε curves for: (a) FRCC; (b) ECC. 
 

(a) 

(b) 

 Void size 
range (mm) 

A 0.5 to 5.0 

B 1.0 to 5.0 

C 2.0 to 5.0 

D 4.0 to 5.0 

E 0.5 to 2.5 

F 3.0 to 5.0 
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Figure 5. Contour of the damage variable EE i)(1−  at overall strain of 1% (red cotour 
corresponds to a damage equal to unity) in the case of diameter range of voids 1 to 5 mm 

for :  (a) FRCC; (b) ECC. 
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