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ABSTRACT. In this paper we present a closed-form solution for mode I Stress Intensity 
Factors (SIF) in three-dimensional planar flaws based on homotopy transformations of 
a disk. The SIF is given for each point of the crack border under the hypothesis of an 
isolated crack under tensile loading. The solution is proposed in terms of the Fourier 
series and the first order approximation of the coefficients is given using the explicit 
form. The results indicate that the proposed equation is very accurate when the flaw is a 
small deviation from a circle. Our solution is used to predict the SIF of many types of 
planar flaws and the results are compared with numerical predictions taken from the 
literature. 
 
 
INTRODUCTION 
 
Compliance in Stress Intensity Factor (SIF) evaluations in planar three-dimensional 
crack is usually overcome using numerical applications. In fact, apart from some 
particular geometrical cases under simplified stress conditions [1], an analytical solution 
for generic crack shape contours has not been discussed in the literature. In order to 
avoid this problem, Oore-Burns [2] introduced a two-dimensional weight function 
which gives an exact solution in the case of circular or tunnel crack. However, when an 
elliptical crack is assumed, the authors recently showed [3] that, under remote uniform 
tensile loading, the Oore-Burns integral gives a first order approximation of SIF along 
the whole crack front. Furthermore, this first order equation is very close to the first 
order approximation of the Irwin [4] exact solution. In particular, when the eccentricity 
e of the ellipse tends to be zero, the principal contribution 

π20

2e  to the discrepancy is 

very small. 
Murakami and Endo [5] proposed the area  as an empirical parameter for the 
evaluation of the fatigue limit linked to the maximum stress intensity factors under 
mode I loadings (KI,max) of small convex cracks. On the basis of several examples of 
flaw shapes, Murakami ad Nemat-Nasser [6] proposed the simple formula 

areaYK max,I πσ= , where Y is a coefficient which is evaluated as the best fitting of the 
numerical and analytical results (Y=0.629 for surface crack [6]). So that, an explicit 
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analytical equation for SIF calculations could be useful for estimating the fatigue limit 
of internal irregular small defects or irregular cracks. 

The aim of this paper is to propose the evaluation of the SIF along the whole crack 
front, based on an analytical approach. More precisely, we are able to compute a first 
order approximation of the Oore-Burns integral using the closed form. The solution is 
precise to the first order of deviation from a circular shape and under the hypothesis of 
uniform tensile stress. In addition, the coefficient Y related to the maximum stress 
intensity factors can be evaluated and we make a comparison with those proposed in the 
literature. 
 
 
THEORETICAL BACKGROUND 
 
In reference [2] Oore and Burns proposed the following general expression for the 
evaluations of the mode I stress intensity factor for embedded cracks Ω in an infinite 
solid, under arbitrary normal tension σ(Q): 
 

 Ω∂∈Ω
−

σ
π

= ∫
Ω

'Q,d
'QQ)Q(f

)Q(2)'Q(K 2O  (1) 

where Q’ is the point on the crack border Ω∂ , Q is a generic point inside the flaw and 
f(Q) is defined as 

 Ω∈
−

= ∫
Ω∂

Q
)s(PQ

ds)Q(f 2  (2) 

s being the arch-length on Ω∂ . The integral (2) is convergent and the proof is reported 
in reference [8] and is based on the following approximation of f(Q) near ∂Ω: 

 
∆
π

≈)Q(f  (3) 

where ∆ is the distance between Q and ∂Ω. 
Let Ω be an open bounded simply-connected subset of the plane as reported in Fig. 1. 
Therefore, we consider a C2-function R=(ε, ψ), where 0≤ ε ≤1 is a parameter and 0≤ ψ 
≤2π  is the angle and require  
 1),0(R ≡ψ  (4) 
 
Hence, we emphasise the dependence of R on parameter ε, by writing the integral (1) on 
the form 
 

 ∫
≤+ αααε−ψε

ψεψεε
π

=αε
1yx

2

2

O
22

dydx
)sin,(cos),(R)y,x(),(R

),(R))y,x(),(R,(h2),(K  (5) 

 
If Ω is a disk with radius R and σ≡1, f(Q) and KO(Q’) can be easily evaluated:  
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 R2)'Q(KO π
≡  (6) 

From (5), by means of a Taylor expansion, we have 
 
 )(O),0(

K2),(K 2O
O ε+α

ε∂
∂

ε+
π

=αε  (7) 

 

The detailed calculation of ),0(
K O α
ε∂

∂
is reported in reference [9].  

Finally, after some calculations, we obtained the following approximation for Oore-
Burns integral (1) as a function of angle α: 
 
 )(OeEc12),(K 2in

nnO ε+
⎭
⎬
⎫

⎩
⎨
⎧

ε+
π

=αε ∑
∞+

∞−

α  (8) 

 
Where cn are the Fourier coefficients of the first order crack front position 

( )α
ε∂

∂
=α→α ,0R)(S  in the sense that ∑

+∞

∞−

α=α in
n ec)(S . 

The En coefficients, are independent from the homotopy R(ε,α) and are reported in table 
1. 
In general, by taking into account that an a-dilatation of Ω under uniform normal 
tension σ produces factor a  in the expression of Ko, from (8) we are able to state the 
following final equation:  

 )(OeEb1a2),(K 2in
nnO ε+

⎭
⎬
⎫

⎩
⎨
⎧

ε+
π

σ
=αε ∑

∞+

∞−

α  (9) 

 

where bn are the Fourier coefficients of ),0(S
a
1

α
ε∂

∂
→α  and ),(S αε  describes the 

boundary of )(εΩ∂  
Table 1. En coefficients 

n En  n En 
0 ½ 6 -1.58042 

1 0 7 -1.81911 

2 -0.4 8 -2.04377 

3 -0.74286 9 -2.2566 

4 -1.04762 10 -2.45929 

5 -1.32468 11 -2.65318 
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Figure 1. Perturbation of the circular flaw 
 
 
COMPARISON WITH THE NUMERICAL EXAMPLES IN THE LITERATURE 
 
In order to compare the results given by Eq. (9), in the following we have considered 
four cases of plane crack in an infinite solid under tensile loading which has contour 
shaped elliptical cracks, square cracks, half circle-half ellipse and circle-like sinusoidal 
cracks. These cracks have convex contours like the cracks considered in references [5, 
6]. The first case was tested by means of the classic solution proposed by Irwin [4] and 
the others convex cracks were checked by referring to Mastrojannis et al. [7] who 
proposed a new integral equation for SIF under generic stress distribution over the 
cracks. However, the integral equation was solved numerically. 
 
 
Elliptical crack 
 
As is well known, the SIF for elliptical cracks in the semi-axis (a,b) was given by Irwin 
using the closed form in Ref. [4] : 
 

 
4/1

2
2

2
2

Irw cos
a
bsin

)k(E
b

)(K ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β+β

πσ
=β  (10) 

with α=β tg
b
atg  , 

2

2a
b1k −=  and E(k) is an elliptical integral of the second kind.  

Figure 2 shows the comparison between the Irwin formula (10) and Eq. (9) for a ratio 
a/b equal to 0.6. The average error is around 1.4 % and becomes less than 1% when the 
b/a ratio is between 1 and 0.6. 
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Figure 2. Comparison between Irwin solution [4] and Eq. (9) (σ is the remotely uniform 

tensile stress). 
 
Square crack 
 
The solution for square crack has been discussed in the literature only by using 
numerical forms [7, 10]. Figure 3 reports the predicted values for SIF by means of Eq. 
(9) and the numerical results obtained by Mastrojannis et al. [7]. The average error was 
around 4%. Note that in Ref. [5] the corner was slightly rounded, as happens in the case 
of Eq. (9), because we considered a limited number of waves (in Figure 3, 15 terms 
were used).  
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Figure 3. Comparison between the Mastrojannis et al. numerical solution [7] and Eq. (9) 

(σ is the remotely uniform tensile stress). 
 
Half circle-half ellipse 
 
A two-dimensional crack which took the shape of a half circle-half elliptical crack was 
also analysed in Ref. [7]. Figure 4 shows the comparison between the numerical results 
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[7] and those predicted by means of Eq. (9). In this case the comparison was very 
satisfactory and the average error was around 1%. 
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Figure 4. Comparison between the Mastrojannis et al. numerical solution [7] and Eq. (9) 

(a/b=1.5; σ is the remotely uniform tensile stress). 
 
 
 
Half circle-like sinusoidal contour 
 
This type of crack has a boundary in the form of a half circle and half shape whose polar 
equation is given as [7] 
 
 

α⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=

sin1
R
A1

Ar

2
m

2
 (11) 

 
The SIF of the mode I loading which had been numerically solved in Ref. [7] is 
compared with Eq. (9) in Fig. 5. The error in the prediction of the maximum SIF was 
1.4% while the average error along the whole contour was around 3%. 
 
 
Remark  
 
In Refs [5, 6, 11] the 4 area  was proposed as a parameter which is approximately 
proportional to the maximum SIF max,IK along the crack, which can be evaluated as 
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areaYK max,I πσ= , where Y is a shape factor. Murakami and Endo [5] obtained a value 
of 0.629 for Y (0.5 for internal crack [11]), provided that the crack contour was not 
concave and the crack was not too slender, as in the case of elliptical cracks, with the 
ratio for the two semi-axes being greater than 5 [6] on the basis of the best fitting result 
taken from many numerical results. Table 2 reports the Y coefficients evaluated by 
means of Eq. (9) and those reported in the literature (internal cracks). Although Eq. (9) 
was obtained with a first order theory, the error in the Y prediction is around 2-3%. 
However, in terms of first order theory, Eq. (9) is also suitable for non-convex shaped 
cracks, as shown in Fig. 6. The two-dimensional crack in figure 6 has a Y coefficient of 
0.572. In this case, the maximum SIF is located in the zone where we have a re-entrant 
corner. 
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Figure 5. Comparison between the numerical solution of Mastrojannis et al. [7] and Eq. 

(9) (A/Rm=1.5; σ is the remotely uniform tensile stress). 
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Figure 6. Prediction of irregular crack (σ is the remotely uniform tensile stress) 
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Table 2. Y coefficients 

crack shape Y  
literature  

Y  
Eq. (9) 

Error  
[%] 

Ellipse Fig. 2 0.518 0.505 2.5 

Square  Fig. 3 0.527 0.536 1.7 
Half circle-half ellipse Fig. 4 0.620 0.620 0.0 

Half circle-like sinusoidal 
contour Fig. 5 

0.609 0.618 1.5 

Fig. 6 - 0.572 - 

 
CONCLUSION 
 
The stress intensity factors (SIF) of a crack subjected to remote tensile loading were 
analyzed by means of the Fourier series. An evaluation of the SIF along the whole crack 
contour was carried out using many cracks. A comparison with the literature results 
showed errors around of only a few per cent in both the maximum and average SIF 
predictions. 
The satisfactory results obtained in the case of convex contours indicates that the 
proposed method could be used for estimating the maximum SIF when the crack has a 
complex contour. For example, the proposed equation could be used for estimating the 
fatigue limit of a material with small defects or cracks with irregular shapes provided 
that the crack has a somewhat circular shape. 
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