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ABSTRACT. This paper presents a numerical calculation procedure for determination  
of subsurface crack propagation in a large slewing ball bearing. In the first step, a  
maximum contact  force on the bearing raceway is  obtained by means of analytical  
expressions, where the Hertzian contact theory is used. In the second step a 3D finite  
element  model  of  the  raceway segment  and the  contact  load is  simulated,  and the  
subsurface stresses and strains are obtained. At the time being the contact load on the 
raceway  is  approximated  by  Hertzian  pressure  distribution  as  calculated  in  the 
previous step. Depth dependent elasto-plastic material properties are used in the finite  
element model of the raceway. In the third step a submodel with the elliptical crack is  
made  and  the  crack  intensity  factors  are  calculated.  The  linear  elastic  fracture 
mechanics theory is used for this purpose. Due to complexity of a problem at this very  
moment  the  finite  element  analysis  does  not  provide  sufficient  results.  However,  it  
seams  that  in  near  future  an improved and fine-tuned finite  element  model  will  be 
suitable for characterization of subsurface crack propagation analysis.

INTRODUCTION

Slewing bearings are machine elements which enable relative rotation of two structural 
parts.  They  are  widely  used  in  the  construction  of  transport  devices  (cranes, 
transporters,  turning  tables,  etc.),  wind  turbines  production  and  other  fields  of 
mechanical engineering. Slewing bearings can accommodate axial and radial forces and 
tilting moment loads acting either singly or in combination and in any direction. Some 
typical loads are shown in Figure 1.

There  are  not  many  publications  in  the  professional  literature  describing  the 
calculation  of  maximum  contact  force  on  the  bearing  raceway.  There  is  a  simple 
equation available in the literature [1], but it does not take into account the clearance of 
the  bearing  and  the  precise  geometry  of  the  raceways,  which  result  in  a  relative 
displacement and rotation of the bearing rings. It is also applicable only in cases when 
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the  in-plane loading of the bearing  F a ,  F r  and  M , such as shown in  Figure 1, is 
applied  to  the  structure.  The  topic  is  more  thoroughly  covered  in  [2,  3,  4],  where 
analytical models for determination of load distribution on the raceway are presented. In 
all cases the calculation of load distribution is based on the Hertzian theory of contact 
and  five  non-linear  algebraic  equations  of  static  equilibrium.  All  models  take  into 
consideration  the  bearing  geometry,  the  non-parallel  displacement  of  the  rings,  the 
clearance and the osculation. Furthermore, the investigation presented in [3] also takes 
into  account  the  deformation  of  the  supporting  structure,  which  is  defined  by  the 
stiffness matrix obtained on the basis of the finite element analysis.

Likewise, not a lot of information can be found about the crack propagation in large 
rolling bearings. Quite few authors investigated experimental and/or numerical aspects 
of crack propagation in similar mechanical parts, such as rails and railroad wheels [5, 6, 
7,  8,  9,  10],  gears [11,  12,  13,  14,  15] and  small bearings  [16,  17,  18] etc.  To our 
knowledge, there is only one paper [19], which deals exactly with the crack propagation 
in  large  rolling  bearings.  Furthermore,  the  most  numerical  investigations  mentioned 
above, except [6,  8,  9,  10], use 2D finite element models for numerical computations. 
Such models  can be used when simulating  line contacts,  as  in  case of  gears,  roller 
bearings, and, to some extent, in case of railroad wheels or rails. However, they can not 
be used to simulate crack propagation in ball bearings, since 3D stress and strain fields 
have to be taken into consideration.

The presented model first shows how to calculate a maximum contact force acting on 
a rolling element by taking into account external loads acting on a bearing. Later on this 
maximum contact force is used in a 3D finite element analysis, where subsurface crack 
propagation is investigated. Submodeling approach is used to reduce the complexity of 
the problem. At the time being the finite element analysis does not provide good enough 
results, but this will be improved in the near future. Furthermore, the model is designed 
completely parametrically, which makes it perfect for parametric analysis.

CALCULATION OF THE MAXIMUM CONTACT FORCE

A maximum contact force on the bearing raceway is calculated on the basis of the load 
distribution. The therm load distribution stands for the distribution of the contact forces 

Figure 1. Typical slewing bearing assembly and loading conditions

1034



between the rolling elements and the bearing raceway, which are acting on the bearing 
raceway. An example of the load distribution is shown in Figure 2.

The algorithm for the calculation of the load distribution and the maximum contact 
force is shown in  Figure 3. The calculation is based on the following assumptions: i) 
external loads acting on the bearing are in static equilibrium with the contact forces 
acting on the raceway (see  Figure 1), ii) the bearing rings are ideally stiff, thus only 
elastic contact deformations are taken into account, iii) the procedure for the calculation 
of the contact forces is based on the Hertzian theory of contact, and iv) the internal ring 
is fixed, while the external ring can move in x , y  and z  directions and rotate about 
x  and y  axes.

The calculation of the contact forces is more thoroughly described in [20], while here 
only the force and moment equilibrium equations will be written:

∑
j=1

n

Q1, j⋅e q1 , jQ2, j⋅eq2 , j =F

∑
j=1

n

r q1 , j×Q1, jr q2 , j×Q2, j = M
, (1)

where indices 1, 2,  i  and  o  represent the adequate direction and geometry,  n  is a 
number of the rolling elements, eq1 ,2  are unit vectors, which define the direction of the 
contact forces, and r q1 ,2  are direction vectors, which point to the contact point. Since 
the moment about the z  axis is 0, the equation yields a system of 5 equations with 5 
unknown variables (displacements and rotations of the bearing ring: u , v , w , x  and 
y ),  which  can  be  solved  using  a  numerical  algorithm for  multidimensional  root-
finding. At the end the maximum contact force Qmax , which is later used in the finite 
element analysis, is calculated as:

Qmax=max Q j       for     j=1n . (2)

Figure Figure 2. An example of the load. An example of the load 
distribution on the bearing raceway

Figure 3. An algorithm for the calculation of 
the maximum contact force
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SUBSURFACE CRACK PROPAGATION ANALYSIS

A subsurface crack propagation analysis is done by means of a finite element analysis, 
and it consists of two steps. First, a global model, which represents a 3D model of the 
bearing segment, as shown in Figure 4, is done. This model is used to obtain subsurface 
stresses, strains and displacements, which are later used as boundary conditions for the 
submodel, which is shown in Figure 5.

Global model
The geometry of the bearing segment is simplified in such a way that the symmetry can 
be taken into account. This is done by calculating the equivalent radii of curvatures r x  
and r y  as shown in Figure 4. Here r c  represents the curvature radius, r CP  represents 
the radius of the contact point in the plane perpendicular to the axis of the bearing, and 
  represents the contact angle, i.e. angle between the contact force and the axis of the 
bearing. The bottom of the model is fixed in all directions.

The  bearing  segment  is  divided  into  layers  (see  Figure  4),  so  that  the  depth-
dependent elasto-plastic material  properties can be taken into account.  Each layer  is 
modelled  with  the  cyclic  stress-strain  curve  characterized  by  the  Ramberg-Osgood 
equation [21]:

a=
a

E  a

K ' 
1
n'      where     K '=

 f '

 f ' b /c
     and     n'= b

c . (3)

In the above equation a  and a  are strain and stress amplitudes, respectively, and E , 
 f ' ,   f ' ,  b  and  c  are Young's modulus of elasticity,  fatigue strength coefficient, 
fatigue ductility coefficient, fatigue strength exponent and Fatigue ductility exponent, 
respectively. The parameters in equation (3) are obtained on the basis of the available 
experimental data, i.e. by averaging or by linear regression of the values available from 
the literature [22, 23]. An assumption, that the material properties for compression and 
tension are the same has also been made. The raceway has been divided into three layers 
with different material properties. These layers simulate material changes, which result 
from the surface hardening.

Figure 4. Global finite element model – a model of a bearing segment
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The maximum contact load was modelled by Hertzian pressure distribution p  x , y  
and Coulomb's friction q  x , y  , which are given by the following equations [2]:

p  x , y= p0⋅1− x
a 

2

− y
b 

2

     and     q  x , y =⋅p  x , y , (4)

where p0  is the maximum contact pressure on the raceway,  a  and b  are major and 
minor semi-axes of the contact ellipsis, respectively, and    is coefficient of friction. 
These  values  are  calculated  in  the  calculation  of  the  maximum  contact  force,  as 
described in the previous section and in [20]. 

Without a doubt this approach oversimplifies the exact contact conditions. However, 
it  reduces the hardware requirements and computation time significantly,  and it was 
chosen merely to demonstrate the calculation procedure. Moreover, the purpose of the 
analysis is to evaluate the influence of different parameters on crack propagation, and 
not to obtain the exact values, which could be used for engineering work.

Submodel
The submodel mesh with the crack, and its approximate relation to the global model is 
shown in Figure 5. The depth of the crack was defined by the maximum subsurface Von 
Mises stress, which was calculated in the global model. The crack was modelled as two 
parallel  elliptic  contact  surfaces.  The  friction  between  the  crack  faces  was  also 
considered. In the first iteration the aspect ratio of the crack semi-axes was chosen to be 
acrack /bcrack=1 , and an initial length of the crack semi-axes was approximated by the 
threshold crack length a th  as described in [12]

At  the  end  the  equivalent  stress  intensity  factor  K eq  and  the  crack  extension 
direction   at each crack tip node (see Figure 5) were to be calculated as [24]:

 K eq=
 K I

2
 1

2  K I
24 1.155K II

24 K III , (5)

Figure 5. Submodel mesh with the crack
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=±[140 ∣K II∣
K I∣K II∣∣K III∣

−70∣ K II

K I∣K II∣∣K III∣∣
2] , (6)

where  K I ,  K II  and  K III  are  the  Modes  I,  II  and  III  stress  intensity  factor 
ranges, and K I , K II  and K III  are the Modes I, II and III stress intensity factors.

RESULTS AND DISCUSSION

The maximum contact force was calculated with the inhouse developed program SDAL 
[25] which is based on the calculation procedure described above. The geometry of the 
analysed bearing was as follows: the ball track diameter  d 0=2010 mm , ball diameter 
d b=45mm , osculation  S=0.97 , nominal contact angle  =45° , and the number of 
balls  n=123 .  Material  properties  were:  Young's  modulus  of  the  rings 
E r=205000 MPa ,  Young's  modulus  of  the  balls  E b=210000 MPa ,  and  Poisson's 

ratios of the rings and balls  r=b=0.3 . The maximum external load was moment 
acting about the x  axis M x=3214 kNm , and the minimum external load represented 
unloaded state. These values resulted in the load distribution as shown in Figure 2, and 
in the maximum contact force and pressure Qmax=78.93kN  and pmax= p0=3000 MPa
, respectively. The contact ellipsis semi-axis were a=10.97 mm  and b=1.15 mm .

The curvature radii, which were required for the finite element geometry model were 
r x=rc=23.2 mm  and  r y=1398.8mm .  As  mentioned  above,  the  raceway has  been 
divided  into  3  layers:  case,  transition  and  core.  Each  layer  had  different  material 
properties, which are given in Table 1. The Poisson's ratios for all layers were =0.3 . 
The contact load was simulated as the surface pressure defined by the equation (4), and 
the coefficient of friction on the raceway was =0.05  [2]. Furthermore, the coefficient 
of friction between the crack faces was =0.5  [10].

The subsurface stresses and strains, which were calculated in the global model are 
shown  in  Figures  6 and  7.  The  figures  show  that  the  stresses  reach  maximum 
approximately  0.8 mm  under  the  surface.  Thus,  an  assumption  was  made,  that  the 
subsurface crack appears at this depth. It can also be seen that shear stresses ( sxy , S xz , 

Table 1. Material properties used for the finite element analysis

Thickness
[mm]

Hardness
[HB]

E
[MPa]

 f '
[MPa]

b
[/]

 f '
[/]

c
[/]

case 3.5 615 2540 0.057
transition 1.0 445 205 2040 – 0.081 0.389 – 0.716
core other 615 1555 0.712
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S yz ) are significantly smaller than normal stresses ( S xx , S yy , S zz ). Only S yz , which 
is due to the Coulomb's friction on the raceway surface.  Figure 7 shows the residual 
stresses  after  unloading.  This  means  that  the  plastic  deformation  under  the  surface 
occurred. High scatter of stress values along the crack depth in Figure 7 means that the 
mesh was too coarse.

In  the  next  step  the  crack  intensity  factors  and  ranges  were  to  be  calculated. 
However,  due to  problems with the mesh density and the limitations  of the current 
design of the submodel, their values were not calculated accurately enough. Namely, the 
crack intensity factors were calculated  on different  crack fronts,  but their  values  on 
subsequent crack fronts varied too much.

CONCLUSION

The  numerical  analysis  presented  in  the  paper  tries  to  cover  two  aspects  of  the 
subsurface crack propagation in the large slewing rolling bearings. The first part covers 
the computation of the maximum contact force acting on the raceway, and the second 
part covers the computation of the subsurface stresses and strains, and evaluation of the 
subsurface crack propagation.

The calculation of the maximum contact force is done on the basis of the Hertzian 
contact pressure. The computational procedure is implemented in the inhouse developed 
program SDAL [25]. Currently the program supports the calculation of single row ball 
bearings, but this will be enhanced in near future.

The subsurface crack propagation is evaluated by means of finite element analysis. 
Unfortunately,  there  was not  enough time  to  improve  the  finite  element  model  and 
submodel. Thus, the results obtained by the current model are not good enough, and are 
not presented in this paper. The reason for such results seams to originate from the mesh 
density. Since the whole model is entirely parametrised it takes quite some time and 
effort  to  enhance it  in  a way that  finer  meshes  with sufficient  quality  can be used. 

Figure 6. Subsurface stresses at 
maximum contact pressure

Figure 7. Subsurface (residual) 
stresses after unloading
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Hence, in near future the finite element analysis will be enhanced, so that the stress 
intensity factors and ranges can be computed and used in further studies.
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