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ABSTRACT. The present paper introduces a new nonlocal coupled damage-plasticity 
model aiming at predicting crack paths within plates made of ductile material and 
subjected to pure tensile loading. This model is inspired by Nguyen’s model [1] for 
quasi-brittle material. It uses the Houlsby and Puzrin [2] framework that makes the 
model formulation internally consistent by linking the damage and the yield functions 
via a dissipation potential. However, as in Lemaitre [3], the damage law is explicitly 
defined in order to ease the implementation. This model has been implemented within a 
UMAT for the finite element (FE) package Abaqus (implicit). Thin plates of different 
geometries have been modelled and tested using this model. The model ability to follow 
the process until total failure without encountering problems such as numerical 
instabilities, to give mesh-independent results and to predict reasonable crack paths has 
been demonstrated. Advantages and limitations of the present approach are discussed. 
Emphasis is placed on the need to calibrate the model parameters so as to achieve the 
best match with the experimental data.  
 
 
INTRODUCTION   
 
The study of crack propagation within ductile material under thermo-mechanical cyclic 
loading is a key issue for the aeronautical industry mostly for the reasons of improved 
design and safe operation. Indeed, the widespread use of damage tolerant design 
principles has made the crack propagation and trajectory analysis absolutely essential. 
Even though the capability of predicting crack rates and trajectories using the finite 
element framework (FE) has been greatly advanced over the past decades, efficient 
implementation remains a challenge even under simple loading conditions, such as pure 
tensile or pure shear loading. Two different approaches have been explored since the 
1980’s when the problem began to be addressed. The first one regards the crack as a 
discontinuity, an interface, while the second considers it as a fully degraded part of the 
continuum. Both approaches have their advantages and disadvantages. The first 
approach has the advantage of representing the discontinuous nature of the crack. The 
second approach (continuum damage mechanics - CDM) captures the softening 
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observed within the material in the crack’s immediate neighbourhood, but doesn’t 
provide precise identification of the crack’s spatial location. Numerical instabilities 
arising due to material softening, mesh-dependent results and the model’s incapacity to 
predict size effects are also some of the critical problems known to arise in either of 
those approaches. Recently, Nguyen [1] proposed a CDM nonlocal model for brittle 
materials that overcomes successfully all of the previously mentioned problems. In the 
present study we introduce an adaptation of Nguyen's model to the case of ductile 
materials. Of course, the micro-mechanics of ductile and brittle fracture are different: 
ductile fracture is known to be due to voids nucleation, growth and coalescence (Rice 
and Tracey [4]), while rupture of quasi-brittle materials is associated with distributed 
micro-cracking, e.g. at the interface between the matrix and the aggregates. However, 
the two fracture modes also possess some similarities. For example, in the overall load-
displacement curves associated with both rupture processes, the early linear elastic stage 
is followed by a phase for which material's hardening and material's softening are in 
competition and that is manifested first in a nonlinear increasing curve (when hardening 
is preponderant) and then by a decreasing curve (when softening becomes paramount). 
We have implemented our model within a UMAT for the FE package ABAQUS and 
tested it for the example cases of thin plates (2D plane stress models) subjected to pure 
tensile loading. The model ability to follow the rupture process to its end, to give mesh-
independent results and to predict reasonable crack paths in plates of various geometries 
has been demonstrated. The needs for an efficient method of model calibration and for a 
more physically realistic damage law are identified.   
 
 
MODEL FORMULATION 
 
The model used in this study is an adaptation of Nguyen’s model [1] for quasi-brittle 
materials. It is inspired by Houlsby and Puzrin’s [2] thermodynamic framework, but 
also has some similarities with Lemaitre’s [3] approach. Thus, the yield and the damage 
function are linked by a dissipation potential which makes the model formulation 
consistent as in Houlsby and Puzrin [2], but the damage is explicitly defined as in 
Lemaitre [3] so as to ease the implementation. The 1D formulation of this model has 
already been presented in Belnoue et al. [5], and its full version will be outlined in a 
forthcoming paper by Nguyen et al. [6].  
 
Stress vs. Effective Stress 
As in all CDM models, the stress-strain relationship and the effective stress-strain 
relationship are expressed as follows:  

 
)()1( ijijijkldij a αεασ −××−=                                            (1) 

)( ijijijklij a αεσ −×=                                                   (2) 
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In the above equations, ijσ  and ijσ  are respectively the stress and the effective stress 
tensor, while ijε  and ijα  are the total strain and the plastic strain tensors. ijkla  is the 
elastic stiffness matrix and dα  is the so-called scalar damage variable. Following the 
effective stress concept (Kachanov [7]) and the strain equivalence principle (Rabotnov 
[8] and Lemaitre [3]), dα  takes materials degradation into account by decreasing the 
initial coefficients of  ijkla  as the material is progressively damaged. Once dα  reaches 
unity, the material is thought to be fully damaged and to have lost all its stress-carrying 
capacity. The scalar nature of  dα  implies the isotropic nature of damage. This 
approximation may be thought to be suitable in our case, since the focus is on damage 
caused by voiding, rather than micro-cracking. 
 
Plasticity and damage coupling 
The Drucker-Prager yield criterion used in Nguyen [1] is replaced, here, by a typical 
Von Mises yield criterion (see Eqs. 3) that describes better the plastic behaviour of 
metallic alloys:  

( ) 0
2
3 ''* =−×= ppiijijp Fy εσσ                                            (3) 

 
In (3), *

py  is the yield function, '
ijσ  is the deviatoric part of the stress tensor ijσ , and 

( )ppiF ε  is the hardening function that depends on the equivalent plastic strain pε  whose 
time increment, pε& , is defined in Eq. 4:  

 

          ijijp ααε &&& ××=
3
2                                                      (4) 

 
As in Grassl and Jirasek [9], the model nonlocality appears only when the damage 

criterion is defined (Eq. 5). The coupling between damage and plastic strain is 
maintained by defining the damage function ( )pdG ε  as a function of the local-nonlocal 
equivalent plastic strain pε  that itself is a function of pε  and of the nonlocal plastic 
strain pε

~  (that is also a function of pε ). 
 

( ) ( ) 0=−= ddpdd FGy αε                                              (5) 
( )pdd G εα =                                                       (6) 

 
To ease the implementation, the damage criterion (Eq. 5) is simply used to start the 
damage process. The dissipation potential, ( )ddF α , is implicitly defined and taken as the 
maximum previously reached value of ( )pdG ε  known explicitly, as in Lemaitre [3],. 
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Nonlocal plastic strain and local-nonlocal equivalent plastic strain 
The increments of the nonlocal equivalent plastic strain pε&

~  and of the local-nonlocal 

equivalent plastic strain pε&  are respectively defined in (7) and (8) below: 
 

∫ ××−×=
pV

pp dVyxg
xG

εε && )(
)(

1~                                          (7) 

ppp mm εεε &&& ×−+×= )1(~                                               (8) 
 

Eq. (7) is the traditional formulation of nonlocal plastic strain, as originally 
formulated by Pijaudier-Cabot and Bazant [10]. The implication is that the damage state 
at a certain point x  of the continuum depends not only on the plastic strain state at that 
point, but is also influenced by the strain state of points situated in its close 
neighbourhood. Moreover, the farther a point, y , is from the point, x , the less its 
influence is. It is considered that the influence does not extend outside a certain region 
of radius R , known as the nonlocal radius. Thus, R  acts as a material length scale and 
determines the size of the localization area. All this information is contained within the 
integral formulation, where pV  below is a volume defined by the sphere of centre x  and 
radius R , and the bell-shaped weight function )(rg  (where r  denotes the distance 
between the points x  and y ) is defined as: 
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Here ( ) ( )∫ −=

pV
dVgG xyx  is used to normalize the weighting scheme applied to the 

local equivalent strain.  
Grassl and Jirasek [9] have remarked that the coupling between damage and pε

~  is 
not sufficient to assure the model’s mesh independence and then have proposed to 
couple it with pε  instead, with the nonlocal ratio, m , being strictly greater than unity. 
We can remark that purely local formulation and nonlocal formulation of Pijaudier-
Cabot [12] and Bazant type are both particular cases of Eq. (8). Taking m  equal to zero 
gives a purely local formulation, while setting m  equal to unity restores the nonlocal 
formulation of Pijaudier-Cabot and Bazant [10]. 
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MODEL IMPLEMENTATION 
 
The model presented above has been implemented in 2D (plane stress) within a UMAT 
subroutine for the FE package ABAQUS and applied to thin plates of different 
geometries (see Figure 1) fixed at one end and pulled in tension at the other extremity. 
Implicit integration of plasticity has been used. Chaboche [11] hardening law and a 
Lemaitre damage function [12] have bee chosen. 
 

       
a                                  b                                   c                                   d         
 
Figure 1: Different plate geometries to which the model has been applied: (a) Double 
edged-notched tensile specimen (DENT) – only a quarter of the actual piece has been 
meshed due to symmetry; (b) Asymmetric DENT specimen, (c) DENT specimen with 
crack deviator (hole), and (d)  D-notched tensile specimen. 
 

Figure 2 illustrates the model’s ability lo follow the deformation process to the end 
and to give mesh-independent results, as already demonstrated for the 1D version of the 
model (Belnoue et al. [5]) is preserved also in the 2D version. Hence, the overall load-
displacement curves of the DENT specimen clearly show that the process can be 
followed till almost total loss of the plate’s load-carrying capacity (i.e complete 
rupture). Moreover, plotting this curve for different mesh sizes, one coarser than the 
other, doesn’t show any difference in the model behaviour. 
 
 
CRACK PATHS PREDICTIONS 

 
Finally, the model’s ability to predict crack paths within plates of different geometries 
has been validated.  Figure 3 shows the damage distribution of the plates in Figure 1 
once they have been totally broken. As explained previously, cracks can’t be clearly 
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identified as a discontinuity in this CDM implementation. Instead, crack paths are 
represented by broadened de-localised bands of high damage. Thus, crack location and 
path are only predicted to the accuracy of about one element diameter. However, some 
improvement of this spatial resolution can be obtained by post-processing the 
simulation results by analysing the damage profile across the damage band, and 
associating the crack with the centre of this band in the direction transverse to its extent. 
In this context the crack line position can be defined as the centre of gravity of the 
damage profile, or by locating it in the middle position between centres of edge 
transitions from damage value of 1 within the band and 0 outside it. This approach may 
help improve the crack location capability of the model to sub-element accuracy, so that 
spatial resolution of about 1/10th of the element size can be expected. 
 

Overall Load/Displacement Curve
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Figure 2:  Overall load-displacement curves for DENT specimens under tensile loading 
for different values of the nonlocal ratio m  and different mesh sizes. 
 

Figure 3 shows that the present model is able to predict the crack paths that might be 
expected for plate specimens shown in Figure 1. For the DENT specimen, the crack 
initiates at both notches and propagates linearly. The specimen loses its load-carrying 
capacity entirely once the cracks originated from the opposing notches join up in the 
middle of the plate. A similar phenomenon is observed in the D-notched tensile 
specimen. For the asymmetric DENT, however, the shear loading created by the offset 
of the two notches from the mid-side position forces the growing crack to deviate from 
a linear path. A diagonal crack joining the two notches is observed instead. Finally, 
Figure 3(c)/ shows the crack-deflecting effect of a hole placed off the sample line of 
symmetry and displaced towards one of the notches in the transverse direction. 
 

1014



 
a  

b 

  
c 

       
d 

 
Figure 3: Damage distribution in the plates presented in Figure 1 at the end of the 
damage process.  
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DISCUSSION AND CONCLUDING REMARKS 
 
The present paper introduced a new nonlocal model for ductile materials. The model’s 
ability to follow the tearing process in thin plates under pure tensile loading until 
complete failure without encountering problems related to numerical instabilities, the 
capability to give mesh-independent solutions and to predict reasonable crack paths 
through plates of different geometries have been demonstrated. 

However, as shown Figure 2, the choice of parameters such as the nonlocal ratio m  
influences the overall mechanical response of the plates under tearing. The value of the 
nonlocal radius R  is also known to change the material’s behaviour significantly. The 
development of an efficient calibration method for the present model thus appears to be 
an essential requirement for being able to predict the behaviour of real components. 

Further developments aiming at incorporating creep and fatigue effects within the 
model formulation are being undertaken.  
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