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ABSTRACT. The present work is aimed at providing some expressions for stress 
distributions due to U- and V-shaped notches in rounded bars under torsion, including 
the finite size effect. By taking advantage of the global equilibrium conditions, the shear 
stress distributions are determined not only in the vicinity of the notch root but also on 
the entire net section of the shaft. 
The degree of accuracy of the new closed form relationships is checked by a number of 
FE analyses carried out on finite size components subjected to torsion loads. 
 
 
INTRODUCTION   
 
In structural components fatigue cracks initiate and propagate from the highly stressed 
zones where notches provoke perturbations of the stress fields.  
The knowledge of theoretical stress concentration factors and local stress distributions 
in the neighbourhood of the geometrical stress raisers is essential for engineers engaged 
in fatigue design and fatigue crack growth problems. Indeed, as the notch radius 
decreases, brittle failure as well as high cycle fatigue failure are no longer controlled by 
the peak stress value but rather by the stress fields present in the highly stressed zones. 
When the notch tip radius tends to zero, the magnitude of the stress distributions is often 
given in terms of stress intensity factors or notch stress intensity factors, the latter valid 
for V-notches with an opening angle different from zero. Taking advantage of 
Bueckner’s superposition principle, not only the crack initiation phase but also the early 
crack propagation phase can be predicted in all cases on the basis of the stress 
distributions initially determined on the uncracked component. 
In the previous literature notch problems have then been extensively analysed by taking 
advantage both of analytical approaches, see Refs [1-3] among the most important 
contributions, or numerical methods [4, 5]; these works mainly dealt with notches under 
tensile or bending loadings. On the contrary, even if the engineering use of torque 
carrying shafts is extensive, being them susceptible to crack formation at notches and 
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grooves, only few works were focused on torsional loading of prismatic shafts; among 
these contributions, the most important one is due to Neuber [6]. 

Some analytical solutions of the stress distributions in notched components under 
torsion have been recently reported in the literature [7, 8] taking into account semi-
elliptical, parabolic or hyperbolic notches in round shafts.  
When components can be considered as infinite, stress distributions are not influenced 
by external boundaries and depend only on the relevant boundary conditions provided 
by the notch shape; on the contrary as dimensions decrease the outer boundaries begin 
to exert a strong influence [8]. 
Complete and exact analytical solutions for finite bodies are not impossible, but 
typically involve a series-approximation-based approach that leads to results less 
manageable with respect to the co-respective infinite body-based treatise [9, 10]. Such 
an approach may be useful even when the notch profile cannot be described by means 
of a unique continuous function, such as in the case of a U-notch [11]. 

Differently from those important contributions, in this work we will discard the 
series-based approach, and provide simple but accurate expressions for the stress fields 
due to U- and V-rounded notches under torsion by starting from the analytical solution 
valid for hyperbolic and parabolic notches. The finite size effect will also considered by 
taking advantage of a global equilibrium condition, as suggested in Refs. [12-14] 
dealing with components under tension loads. In such a way the expressions for shear 
stresses will be accurate not only in the vicinity of the notch root but also on the entire 
net section of the shaft. The accuracy of the new closed-form relationships is checked 
by a number of FE analyses carried out on finite size components subjected to torsion 
loads. 
 
 
HYPERBOLIC AND PARABOLIC NOTCHES UNDER TORSION 
 
Stress distributions for hyperbolic and parabolic notches under torsion loading have 
been recently provided by Zappalorto et al. [8] by using, in combination, Neuber’s 
curvilinear coordinate system [6] and a complex potential approach linking shear 
stresses to a unic holomorphic function, 1λi

zzr
−ϕ

ϕ =− zeτiτ .  
By imposing appropriate boundary conditions, stresses were written as functions of the 
maximum shear stress at the notch tip according to the following expression (see also 
figure 1) [8]: 
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The geometrical parameters q, r0, r’ are given as follows [8]: 
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Along the notch bisector line Eqs. (1b) simplifies: 
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Eqs. (1a-b) are general and match in some particular cases some well known results of 
fracture and notch mechanics reported in the literature [8]. 
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Fig. 1. Neuber’s system of curvilinear coordinates (u, v) (a); reference system used in 
the analytical solution (b). 

 
 
U- AND V-SHAPED NOTCHES 
 
 Stress distribution along the notch bisector line for the highly stressed zones 
Due to the very simple form of Eqs. (1, 3) and to the close similarity charactherising a 
circular notch with rectilinear flanks and a hyperbolic notch, it is natural to apply them 
to both notches, without any clear distinction. 
However stress distributions due to operating torsion loadings are very sensible to the 
notch shape, and geometrical differences in the notch profile may cause a deviation in 
the flow of stresses within the body, even very close to the notch tip [7]. 
In particular, the analytical solution obtained in Ref. [8] is able to guarantee the 
necessary notch free-edge condition only when the notch profile is actually hyperbolic 
or sharp V- shaped, but generates some residual non-zero shear stresses on the edge in 
the case of a blunt V- or U-notch; in these cases the prescribed boundary condition on 
the edge is actually satisfied only at the notch tip, where ϕ =0, or, approximately, far 

987



from the tip, where απ −→ϕ , as shown in figure 2.  
For this reason Eqs. (1, 3) when applied to circular-root-notches with rectilinear flanks 
are approximated, and the degree of accuracy depends both on the notch opening angle 
and on the notch root radius, ranging between 2% up to 12% (see figure 3). This means 
that in all the cases where the accuracy of stress distribution is basic Eqs. (1a-b) cannot 
be applied as they are.  
However, an intense numerical study of the problem has highlighted that stresses along 
the notch bisector line can again be written as a function of a single powered term in the 
following form [15]: 
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The exponent s3 in general is greater than (1-λ3), valid for the corresponding hyperbolic 
notch; this fact has been thought of as due to the influence of the rectilinear flanks on 
stress flow, exerting a sort of closure effect with respect to the hyperbolic notch with the 
same opening angle (see also figure 2) [15].  
The values of the exponent s3, as obtained from a large bulk of numerical results, are 
listed Table 1, where the notch acuity ζ= a/ρ  ranges from 2 up to 100. In principle, the 
more the notch acuity increases, the more the exponent s3 is expected to deviate from 
the theoretical value (1-λ3), since the number of discrete points where the previous 
analytical solution does not satisfy the prescribed boundary condition on the edge 
increases [15]. 
However it has been found that when the notch opening angle is equal to or greater than 
90°, the influnce of the notch acuity on s3 is so weak to be considered negligible, so that 
the exponent of stress fields can be thought of as dependent only on the notch opening 
angle. 
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Fig. 2. Reference system for a U or rounded V-shape notch (a); geometrical differences 
existing between a hypercolic notch and rounded V-shape notch (b). 
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Table 1. Values for coefficient s3 in Eq. (5) 
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Figure 3. Plot of the stress component τzy along the notch bisector line of U- and V-
notches in a rounded bar and comparison with Eqs. (3) and (5). 

 
Figure 3 shows a comparison between FE results and Eqs. (3) and (5). It is evident that 
the proposed correction for stress fields eliminates the inaccuracy previously shown by 
Eq. (3). 
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Evaluation of stresses on the entire ligament  
Due to their nature Eqs.  (3, 5) are valid only in the highly-stressed zone close to the 
notch tip, and not in the nominal zones, where the influence of the notch can be 
neglected. However, the range of applicability of the solution can be largely extended 
by substituting the variable r with the following function: 
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This function has been already proposed in Refs [12-14] for uniaxially loaded notched 
components of finite size. 
By inserting f(r) according to Eq. (6) into Eq. (5) one obtains: 
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Figure 4. Plot of the stress component τzy along the notch bisector line of U- and V-

notches in a rounded bar and comparison with Eq. (7). 
 

 
The value of m to be used in Eq. (7) can be easily determined by means of a simple 
equilibrium equation on the net section:  
 

990



( )[ ]
∫ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+

−R

0 tn

4
3

s

0 K4
R dt t

mr
mtR1

3Arctan       (8) 

 
where the change of variable t = R−(r−r0) is used. Here Ktn is the theoretical stress 
concentration factor referred to the net section of the rounded bar. Eqs. (7, 8) hold valid 
also for parabolic or hyperbolic notches as soon as s3 is substituted with 1-λ3.  
Figures 4-6 show a comparison between theoretical predictions and FE results from 
rounded bars weakened by U- and V-notches. Different opening angles, notch root 
radius, and ligament widths are considered. It is evident that the agreement is very good 
for all cases. 
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Figure 5. Plot of the stress component τzy along the notch bisector line of U- and V-
notches in a rounded bar and comparison with Eq. (7). 

 
 
CONCLUSIONS 
 
Some new useful expressions for stress distributions induced by U- and V-shaped 
notches in rounded bars under torsion have been presented.  
A simple global equilibrium conditions has been introduce to account for the finite size 
effect; in this way the shear stress distributions can be accurately determined on the 
entire net section of the shaft, and not only in the vicinity of the notch tip. 
The accuracy of the new relationships is checked by a number of FE analyses carried 
out on finite size components subjected to torsion loads. 
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Figure 6. Plot of the stress component τzy along the notch bisector line of U- and V-
notches in a rounded bar and comparison with Eq. (7). 

 
 
REFERENCES  
 
1. Inglis, C.E. (1913) Trans. Inst. Naval Architects 55, 219-30. 
2. Westergaard, H.M. (1939) J. Appl. Mech. 6, A49-53.  
3. Williams, M. L. (1952) J. Appl. Mech. 19, 526-528. 
4. Glinka ,G., Newport, A. (1987) Int. J. Fatigue 9, 143-150. 
5. Xu, R.X., Thompson, J.C., Topper, T.H. (1995) Fatigue Fract. Engng. Mater. 

Struct. 18, 885-895. 
6. Neuber, H. (1958) Theory of notch stresses, Splinger-Verlag, Berlin. 
7. Lazzarin, P., Zappalorto, M., Yates, J.R. (2007) Int. J. Eng. Sci. 45, (2-8), 308-328.  
8. Zappalorto, M., Lazzarin, P., Yates, J.R. (2008) Int J Solids Struct. 45, 4879-4901. 
9. Howland, R.J. (1930) Philos. Trans. R. Soc. Lond. SeriesA 229, 49–86. 
10. Ling, C.B. (1947) J. Appl. Mech. 14, A-275–280. 
11. Seika, M. (1960) Ing. Arch. 27, 285-294. 
12. Atzori, B., Filippi, S., Lazzarin, P. (2003). Proc. Crack Path 2003, Parma, Italy. 
13. Filippi, S., Lazzarin, P. (2004) Int. J. Fatigue 26, 377-391 
14. Atzori, B., Filippi, S., Lazzarin, P., Berto, F. (2005) Fatigue Fract Engng Mater. 

Struct. 28, 13-2. 
15. Zappalorto, M., Filippi, S., Lazzarin, P. Shear stress distributions due to U- and V- 

notches in finite size rounded bars under torsion, to be submitted. 

992


