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ABSTRACT. This contribution presents a novel approach of the cohesive finite element 
method based on an initially rigid traction separation law which allows to insert the 
cohesive elements during the simulation depending on a crack growth criterion. In 
order to represent arbitrary crack patterns, this procedure is combined with an 
adaptive modification regarding the nodal coordinates and element boundaries of the 
initial discretization. In addition to the description of the formulation and algorithmic 
implementation of both the discrete crack model and the adaptive system modification, 
the influence of the traction-separation-dependencies on the global structural response 
in comparison with traction-free crack propagation models are investigated. The 
application of the proposed model to different analytical and experimental problems 
confirms its capabilities regarding the simulation of arbitrary discrete crack growth. 
 
 
INTRODUCTION   
 
Fracture mechanical investigations are of special importance for all material classes. In 
order to predict the safety and durability of a component by a finite element simulation, 
the fracture mechanical sensitivity as well as the potential crack path have to be 
investigated. Common approaches to simulate the propagation of cracks include the 
application of softening material formulations to continuum elements leading to a 
smeared representation of the crack path or the application of adaptive crack 
propagation algorithms. However, these strategies are not able to represent the process 
of crack growth within the process zone. In contrast, the implementation of cohesive 
surfaces between the continuum finite elements in order to model discrete cracks 
provides a mesh independent framework to represent failure processes.  

The discrete crack model on basis of the cohesive finite element dates back to 
investigations on steel sheets by Dugdale [1] and theoretical studies on an atomistic 
scale by Barenblatt [2]. First numerical implementations of cohesive process zones by 
Hillerborg et al. [3] featured a staggered substitution of the symmetric supports with 
equilibrium forces related to the crack opening displacement to simulate the localized 
failure of the structure. A first representation of a crack and interface delamination in 
the framework of the finite element method was presented by Needleman [4] who 
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introduced a formulation with coincident nodal points in the initial configuration and 
who furthermore stated the now common representation of the cohesive constitutive 
relations in terms of a traction separation law. This separate description of the cohesive 
zone and the spatial bulk material, which is represented by stress-strain-dependencies, 
allows to account for a realistic modelling of the crack opening process zone. 

However, the conventional method to integrate a priori considered cohesive surfaces 
in the finite element mesh suffers from a major drawback: Since the cohesive elements 
can only be located at the bulk elements’ boundaries, the crack path has to be known in 
advance, e.g. in case of the delamination of composite materials or glued structures. For 
computations with unknown crack paths, cohesive surfaces must be provided between 
all internal continuum element boundaries, as shown in Xu and Needleman [5] as well 
as in Tijssens et al. [6]. The second technique suffers from two main disadvantages: 
Firstly, it leads to an exorbitant increase of the system’s degrees of freedom and, 
secondly, the effective stiffness of the structure is seriously decreased. In case of a one-
dimensional analysis, the effective stiffness yields   
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depending on the bulk material’s modulus E0, the initial stiffness of the traction 
separation law K0, and the uniform cohesive element spacing he or the number of 
surfaces ne, respectively.  

This contribution concentrates on a new approach which does not rely on an initial 
implementation of cohesive surfaces but uses instead an adaptive insertion of these 
elements in dependence on a crack growth criterion.  
 
 
THE INITIALLY RIGID COHESIVE ZONE MODEL   
 
The conventional method described above, which is also referred to as an intrinsic 
model (cf. Kubair and Geubelle [7]) due to the failure criterion as an inherent 
component of the cohesive phase, features an initially elastic traction separation law, as 
shown in Fig. 1a.  

In contrast, the proposed approach is based on an initially rigid traction separation 
law (Fig. 1b). Such initially rigid descriptions of the cohesive constitutive relations have 
been used for example by Hillerborg et al. [3] or Carpinteri and Colombo [8] who 
proposed an algorithm to model the prescribed state of a certain crack extension with 
the help of an equilibrium iteration based on the crack tip opening δ and the 
corresponding cohesive forces Fc. Camacho and Ortiz [9] presented the first application 
of an initially rigid traction separation law in the context of a general finite element 
framework. Recent publications covering three-dimensional investigations (Pandolfi 
and Ortiz [10], Pandolfi and Ortiz [11]) as well as several applications (e.g. Pandolfi et 
al. [12]. Ruiz et al. [13], Ruiz et al. [14]) are so far only limited to short time dynamics 
in an explicit time integration scheme. 
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Figure 1. (a) Initially elastic and (b) initially rigid traction separation law  
for equivalent values of Gc 

 
However, in case of most real fracture processes, the crack will evolve slowly and 

stably. The initially rigid description of the cohesive zones was therefore derived and 
implemented for a quasi-static implicit finite element code. 

While procedures basing on an initially elastic traction separation law involve only a 
cohesive element formulation at an appropriate programming interface, the initially 
rigid approach requires an additional consistent modification of the global data structure 
in every time step associated with crack growth. Based on the boundary representation 
update procedure proposed by Pandolfi and Ortiz [10, 11] for tetrahedral elements with 
quadratic interpolation for explicit dynamical applications, a model adaptive discrete 
fracture simulation on basis of hexahedron elements with linear interpolation was 
derived for an implicit finite element framework. 

The proposed finite element simulation of discrete crack growth consists of a 
constitutive analysis of the structure, where the non-linear system of equations has to be 
solved by a Newton iteration accounting for the residual vector and the stiffness matrix, 
and a modification of the finite element system depending on the extrinsic crack growth 
criterion. If the value of the particular failure criterion at one element point exceeds the 
critical value (encircled nodes in Fig. 2a), a separate boundary update routine is applied. 
According to the anticipated crack propagation direction suggested by the failure 
criterion, the relevant corresponding surface is selected for further system modification. 
In this surface, all nodes which exceed the critical value are duplicated and new 
cohesive faces are created between them (Fig. 2b). The nodal connectivity is modified 
for one of the two associated volume elements. In further crack propagation steps, an 
additional modification of the nodal connectivity for the preceding cohesive elements is 
required (Fig. 2c). 
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Figure 2. Boundary update scheme 
 
In order to ensure robustness and convergence of the proposed solution procedure, 

the equilibrium state of a duplicated nodal point before and after the boundary update 
has to be preserved, i.e. the initial traction in the cohesive elements has to adopt the 
forces released by the separation of the bulk elements.  

With respect to the equilibrium state of the assembled structure 
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where ui denotes the current deformations and Kji the corresponding element stiffness 
contributions, the released nodal forces F1 and F2 must represent the affine initial 
traction of the particular traction separation law. A detailed discussion on the time 
continuity requirement of initially rigid implementations can be found in the 
publications of Papoulia and Vavasis [15] and Sam et al. [16]. The correct initial 
traction vector T can be computed from the equation of the resultant nodal forces of the 
volume element and the cohesive element at the time of node duplication 
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which is derived from the decomposed stiffness K and the displacement u of node i or 
by an integration of the stresses over the element domain Ω. 

Thus, the initial state of the resulting traction separation law is not traction-free. To 
ensure the continuity of the computation with respect to time for each node duplication 
process independently from the composition of the nodal force vector, the initial 
traction has to be determined individually. This results in individual parameters for each 
traction separation law, which is usually referred to as “encoding” in the cited literature. 

The resultant material description of one cohesive surface consists of different 
material models for each node. In this context, a numerical integration scheme of the 
Newton-Cotes type for element matrix computation is used. A more detailed 
investigation of the time continuity statement and the resulting requirements can be 
found in the publication of Papoulia and Vavasis [15].  
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ADAPTIVE MESH MODIFICATION   
 
In order to represent arbitrary crack paths, an adaptive modification of the initial 
disretization with respect to the location of nodes and element boundaries on basis of 
the anticipated crack propagation direction suggested by the failure criterion is 
additionally required.  
 

 
 

Figure 3. Anticipated crack propagation angle α 
 
The relocation of the new crack tip dx from the original to the modified nodal 

coordinates x and x’, respectively, is obtained from the interpretation of the crack 
growth criterion (cf. Fig. 3). The remaining mesh is then modified subsequently for 
each crack propagation step. Considering constant nodal locations in normal direction, 
the external boundaries of the numerical model as well as restrictions regarding the 
shape of the continuum elements are taken into account by weight functions Nx and Ny 
set for each individual relocation of a node in x- and y-direction depending on the 
distance from the crack tip. 
 
 
THREE POINT BENDING TEST   
 
The proposed algorithm is applied to the three-dimensional model of a symmetric three 
point bending beam. This kind of numerical example is used in a number of 
investigations related to brittle crack propagation, e.g. Carpinteri [8]. More recent 
investigations with the extended finite element method (Moës and Belytschko [17]) and 
a staggered energy minimisation algorithm (Miehe and Gürses [18]) can be found in the 
literature.  
 

 
 

Figure 4. Three point bending test specimen: geometry, dimensions, loading 
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The geometry of the used beam is shown in Fig. 4. A span width of l = 0.6 m, height 
and depth h = t = l/4 = 0.15 m and a0 = 0.03 m as the initial crack length are used as 
geometric parameters. The material is specified by a Poisson’s ratio of ν = 0.1 and an 
elastic modulus of E = 36.500 MPa. The fracture process zone is characterised by the 
fracture energy Γ0 = 0.05 N/mm and a polynomial decreasing traction separation law. 
The effective traction criterion is applied to drive the fracture process and the strength 
of the material at pure tension is assumed as fT = 3.19 MPa. To prevent rigid body 
motion, the point of loading is fixed in x-direction. Due to the symmetry of the problem, 
the straight line of crack propagation is known in advance. The spatial discretization, 
the crack state at maximum applied displacement and the qualitative σ11 stress state are 
given in Fig. 5. 
 

 
 

Figure 5. Three point bending test specimen: finite element discretization,  
final crack state and σ11 stress field 

 
To evaluate the resultant load-displacement-dependency of the initially rigid 

cohesive zone formulation, a comparison to an equivalent initially elastic computation 
is carried out. Here, a polynomial traction separation law with a maximum normal 
traction of T0 = 3.19 MPa and a crack opening separation of δ0 = 0.0139 mm is used to 
obtain an identical fracture energy. 

 

 
 

Figure 6. Three point bending test specimen: comparison of numerical results 
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As depicted in Fig. 6, the initially rigid approach does not deviate from the linear 
elastic response, which represents the stiffness of the beam without any damage or crack 
propagation, until first crack initiation at a vertical deflection of v ≈ 0.02 mm. The 
applied load at this stage is approx. 40% of the ultimate load for the specified example, 
showing the load increasing capability after first failure. In contrast, the initially elastic 
computation shows a weaker response from the beginning for equivalent parameters due 
to the surface opening before crack initiation.  

The influence of the traction-separation-dependencies on the global structural 
response in comparison with traction free crack propagation models are investigated by 
relating the proposed method to an algorithm for configurational force driven brittle 
crack propagation presented by Miehe and Gürses [18] and Gürses [19]. This 
displacement driven implementation solves the problem of snap back instabilities 
caused by crack propagation with the help of a separation of crack growth and load 
increase in terms of a staggered procedure. To modify the proposed initially rigid 
cohesive crack propagation algorithm with regard to the Miehe and Gürses model, the 
cohesive process zone is removed and the system modification is restricted to one node 
duplication procedure within one time step. Moreover, the internal time value t related 
to the linear increasing load function u(t) is reduced by the increment Δt for the case of 
a changing boundary representation. The related application of tn → tn+1 leads to a 
constant displacement value for the subsequent equilibrium iteration and enables a 
further system modification procedure for equivalent boundary conditions.  

 
a) 

 

b) 

 
 

Figure 7. Three point bending test specimen: (a) numerical results for staggered energy 
minimization approach; (b) crack length depending on the applied displacement 

 
The application to the three point bending beam model with equivalent boundary 

conditions and material parameters leads to a global response, which shows the 
characteristic branch of the relevant computation presented in [18] and [19]. The global 
relation between applied vertical displacement v and the related reaction force R is 
shown in Fig. 7a. If the maximum load bearing capacity is reached, a significant 
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decrease of the associated load occurs resulting from the sudden crack growth. For the 
next stable state, associated with stresses below the critical condition at the current 
crack tip, an increase of the global displacement value leads to a higher reaction force. 
This leads to the characteristic sequence of zigzag sections in the global response for 
that approach. 

Figure 7b shows the completely different quality of crack propagation prediction for 
both models. While the staggered algorithm shows a significant crack elongation in a 
very early stage, the initially rigid approach exhibits a more distributed occurrence of 
crack propagation and total failure at a higher displacement level.  

 
 
SUMMARY  
 
A unique implementation of the cohesive zone model within the finite element method 
was presented. Based on an adaptive system modification and the evaluation of the 
preferred crack direction, the model also allows the representation of arbitrary 
curvilinear crack propagation independent of the initial discretization. The simulation of 
a three point bending beam in comparison with other current approaches showed that 
only the consideration of an appropriate process zone model allows a realistic 
simulation of local and global crack growth phenomena.  
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