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ABSTRACT. Cracks form a barrier for heat conduction and create preferential flow 
paths for fluid, gas and pollutants, i.e. their description is crucial for predicting the life 
expectancy of structures such as dams, nuclear power plants vessels, waste (nuclear or 
not) storage structures, tunnels, etc. In this paper, a model taking into account the 
heterogeneous nature of concrete is presented, i.e. a model describing scale effects, 
cracking nucleation and propagation as well as initial defects in the material. This 
modelling strategy is validated via an original experimental test (four point bending 
test) performed at LCPC. The comparison will be given not only in terms of the global 
answer but also on cracks opening and distribution. The presented model is also 
adequate for describing 3D cracking processes. 
 
 
INTRODUCTION  
 
Concrete modeling is a challenging task as a pertinent model should take into account 
not only scale effects, but also those phenomena related to the heterogeneous nature of 
concrete such as initial defects in the material, cracks nucleation and propagation. In 
this paper, a model taking into account all the mentioned phenomena is presented. 
Material characteristics are defined via statistical distributions (requiring only two 
parameters) based on a large experimental campaign held at LCPC [1]. This kind of 
approach allows obtaining a pertinent, statistical global response and, simultaneously, 
local information (such as crack mouth opening and distribution). The objective of this 
paper is to provide a macroscopic model capable of bridging the gap between the local 
description of the mechanisms at the material level and the global response at the 
structural level, i.e. a model which is capable of properly describing the global structural 
answer and which provides information on the local response. 
 
 
CONCRETE HETEROGENEITY AND PROBABILISTIC MODELING 
 
Concrete heterogeneity can be taken into account by introducing statistical distributions 
of local material characteristics, in particular of the Young's modulus and the tensile 
strength [1]. This technique gives a first hint to the size effect problem if one assumes 
that there is equivalence between the finite elements of the mesh and a volume of 

879



material: the distribution function relating the material characteristics and the size has 
then to be experimentally determined. Rossi et al. [2] have highlighted that it is possible 
to establish a link between tensile strength ft or Young's modulus E and the volume of 
the tensile specimen for concretes having a compressive strength between 35MPa and 
130MPa. An experimental scale effect law has been then established for the mean 
tensile strength m(ft) and the standard deviation σ(ft) as functions of easily measurable 
quantities such as the volume of the specimen Vs and the volume of the coarsest grain of 
the concrete Vg (which can be related to the size of the major heterogeneity) and the 
compressive strength of concrete fc (an indicator of the quality of the cement paste).  

 

Figure 1: Tensile strength mean value/dispersion evolutions [1, 2, 3]. 

These scale laws have been used as input data in a numerical model based on a 
probabilistic approach. Two strategies are here presented: a discrete explicit model [2] 
and an original continuum based approach (see also [3]). 

Discrete approach 

Rossi [1] originally presents a probabilistic model implemented via a discrete approach 
in which interface elements are used to describe the discontinuities. The mechanical 
properties of the interface elements (Young modulus and tensile strength) are 
considered as randomly distributed variables. The volume of the massive elements 
which are adjacent to the considered interface element, acts as the reference (material) 

880



volume. Distribution characteristics (mean value and standard deviation) can be 
obtained from an extrapolation of the empirical formulas given in fig.1. The model is 
considered as probabilistic, but after the random distribution of mechanical properties 
over the mesh, the computation remains deterministic. It is then necessary to perform a 
large number of computations to statistically validate the results (following a Monte 
Carlo-like method). Scale effects are effectively taken into account and the model is 
auto-coherent in the sense that data at the local scale are coherent with results at the 
global scale since a generic law taking into account volume effects can define concrete 
mechanical properties at each scale. Although locally no energy is dissipated (the failure 
of the elementary volume remains elastic-perfectly brittle), the model allows to 
statistically representing a global dissipation of energy through inelastic residual strains, 
softening behaviors. 

This modeling strategy has, however, some shortcomings at least in the original 
formulation presented in [1, 2]. According to the local and probabilistic character of the 
approach, the volume of the element has to be sufficiently small when compared to the 
volume of the meshed structure or to the zone size where stress gradients can develop 
(i.e. the fracture process zone). This can lead to very small ratios Vs /Vg which fall out of 
the domain of validity supported by the experimental campaign [2]. More recently, [4] 
has shown that the evolutions of the mean values and the standard deviations given by 
the empirical formulas with respect to the compressive strength become meaningless for 
ratios Vs /Vg <1. An inverse analysis has then been proposed to determine the 
extrapolation of the empirical formulas to the small ratios Vs /Vg domain. In this paper, 
the extrapolations issued from the inverse analysis are taken into account for Vs /Vg <1. 
The original size-effect law is therefore updated and will be used in the finite element 
analysis. Some questions arise also in the applicability of the discrete-explicit model. 
For more global approaches, at the scale of a whole structure for example, such model 
leads to prohibitive computational costs as the use of contact elements doubles the 
number of nodes. This is even more sensitive in the case of 3D modeling.                
These considerations justify an enhancement towards a continuum based approach. 
Such a model seems more adequate in many situations and in particular when dealing 
with real structures. If compared to a discrete model, a continuum model does not 
require contact elements, i.e. no pre-oriented cracks (any crack direction is favored). 
Moreover, in a continuum model, the cracking of a finite element corresponds to the 
cracking of a volume of material, i.e. the failure of a material volume can be associated 
to the idea of the fracture process zone (FPZ). 

Continuum approach 

The continuum based approach is defined at a macroscopic scale where stress and strain 
states are defined. At this scale, it is theoretically possible to establish a constitutive 
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relation between stress and strain defining the macroscopic behavior of the material. 
Cracking processes can be then taken into account by considering a dissipative 
mechanism at the material scale. Two important facts have to be pointed out: 

- Usually, the identification of the material behavior is performed on laboratory 
samples which size has to be larger than the Representative Elementary Volume 
(REV) in order to properly take into account the material heterogeneity. 
However, when dealing with concrete this size is not often in accordance with 
the size of the finite elements used in the modeling. It is thus necessary to 
perform an extrapolation of the identified experimental behavior to the scale of 
the finite element. This requires taking into account scale changes, i.e. volume 
effects must be considered at this stage. 

- The localization of cracks, generally occurring at the peak, has to be carefully 
taken into account. Before localization, material integrity is quite preserved even 
if the material is severely damaged. After localization, material integrity fails 
such that it is impossible to consider the post-peak softening behavior as 
representative of the behavior of the material. In other words, after the peak we 
shift from a material behavior to a structural behavior [5]. Numerical translations 
of these problems are mostly leading to strong mesh sensitivities and non 
objective responses [6].  

 
The model takes into account at the finite element level these aspects as follows: 
 

- It is assumed that it is possible to define macroscopic quantities whatever the 
size of the finite element, whether it is material representative or not. It is then 
supposed that the mechanical behavior of the finite element depends on its size 
and position, i.e. the behavior of each finite element is prone to random 
variations, thus taking account the material heterogeneity. 

- The mechanical behavior of the finite element (pre- and post-localization) is 
replaced by an equivalent material behavior. Since it is considered as a material 
behavior, this equivalent behavior does not have a softening branch after the 
peak. A dissipative mechanism is chosen to represent the whole cracking 
process, pre- and post-localization. The equivalent behavior is defined via 
equivalence in deformation energy. It can be argued that the local dissipative 
mechanism is not representative of the local energy amount really dissipated by 
the material during cracking. However, one should not forget that the key point 
is to replace the material behavior with a structural behavior by means of an 
equivalent material. In other terms, the local mechanism is approximated in 
favor of a proper global response. At the end of the cracking process, when the 
total amount of available energy is dissipated, failure of the finite element is 
assumed to be brittle. 

 
The dissipative mechanism is represented via perfect plasticity. This choice is justified 
by the simplicity of the approach together with the well established theoretical 
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framework and the robust numerical implementations. The principle of the energy 
equivalence is depicted in fig.2. Details are given in [3]. 

 

Figure 2: Principle of the equivalence for a uniaxial tensile behavior 
 
As far as the uniaxial behavior depends on the stressed volume of material and presents 
some randomness, the area under the curves is also a random quantity influenced by 
volume effects. Consecutively, σm and wd can be considered as random parameters of 
the elastic-plastic equivalent model (also influenced by volume effect). The general 
laws defining the characteristics of the probabilistic distributions for σm and wd have to 
be then identified via an experimental campaign or via a numerical campaign using the 
discrete approach. In such a case, the identification is performed following these steps: 

- Choice of one type of concrete (i.e. Vg and fc are fixed) 
- Choice of one mesh size (this fixes the ratio Vs /Vg) 
- Execution of n different computations 
- Identification of the pre-peak behavior (material behavior) on each of the n 

computations followed by the computation of m(σm) and s(σm)  
- Identification of the mean value of wd on the mean curve of the n computations, 

according to the principle depicted fig.2 
 

The post-peak energy dispersion (and the standard deviation) identification, can be 
alternatively achieved via an inverse analysis on the equivalent model.  
 

NUMERICAL SUPPORT 

The choice of a numerical support is important as it should combine the relative 
simplicity of implicit models (which are particularly suitable for being used in the 
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description of large structures) together with the capacity of giving some extra 
information necessary for a proper crack description. Three finite element approaches 
are therefore considered for the study: a Rashid-like [7] model (in which element 
stiffness is reduced to zero as soon as an energy threshold is reached), a fixed crack 
model [8] and an embedded formulation [9]. The three models have been tested on 
different configurations in order to evaluate the eventual stress locking (see figs.3 left) 
and mesh dependence (see fig.3 right) 

 

Figure 3 
Left: notched beam bending test: fixed crack (b), EFEM (a), Rashid approach (c)  
Right: Traction test with Rashid approach and different mesh (T3 regular, T3 coarse, 
Q4) 
 
According to our test results, the Rashid-like model did not exhibit stress locking and 
together with the proposed probabilistic approach proved to be mesh independent. For 
these reasons, this model has been retained for the further probabilistic analysis.  
 
 
VALIDATION 
 
The modeling strategy presented in the previous sections is here compared to an original 
experimental test performed at LCPC. The experiment consists of a four point 
displacement-controlled bending test on a plain concrete beam. The beam geometry is 
given in fig.5 the concrete used is an ordinary concrete (E=35GPa, fc=50MPa, 
ft=3MPa, values experimentally determined). Displacements are measured on the front 
face via 6 LVDTs. The numerical probabilistic approach follows these steps: 

- 30 computations are executed via the discrete approach for simulating the 
uniaxial tensile behavior of the concrete. A mean behavior is deduced. 

- An inverse analysis is performed on the mean behavior to determine the 
parameters of the continuum approach 

- These parameters are used to the modeling of the bending behavior. Again 30 
computations are performed. 

The beam has been modeled via T3 regular elements; the Rashid-like model has been 
used. Results are given in fig.5. 
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Figure 5: Global behavior: experimental (bold), numerical answer (grey) and mean 
(circles) 
 

The correlation between the experimental result and the mean curve is quite good as the 
experimental result is contained in the set of the numerical answers and is very close to 
the mean answer. The macroscopic model provides not only a global answer but also 
some local information on cracks opening and distribution. In fig.6 a typical crack 
pattern and crack opening curve are presented. It is interesting to observe that not only a 
main macro crack is represented but also the multi-cracking character of the global 
failure is represented. Finally, a numerical traction test on a cube proves the 3D 
capabilities of the approach. In fig.7, a typical crack pattern of a traction test performed 
on a cube is presented. 

 

  
Figure 6: Typical crack patterns and crack opening (numerical -grey-, mean answer -
circles- and experimental -bold-) 

 
Figure 7: Traction test on a cube: cracks opening and load/displacement global answer 
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CONCLUSIONS 

In this paper, a model representing cracking processes in concrete through a robust 
continuum approach coupled with a simple numerical modeling of discontinuities is 
presented. One should not forget that the simplicity of the numerical modeling is 
meaningful only if the approach is coupled with the statistical distribution of properties 
and the given scale laws. This solution strategy allows to properly take into account 
scale effects and the heterogeneous nature of concrete, providing a reliable global 
answer as well as local information such as crack patterns and openings. The first 
results confirmed that also 3D modeling is feasible: this enhancement seems a necessary 
step to take into account the complex nature and geometry of cracks and giving a 
satisfactory description of the local-global behavior of a real structure. 
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