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ABSTRACT. When fracture occurs in a concrete dam, the crack mouth is typically
exposed to water. Very often this phenomenon occurs at the dam-foundation joint
and is driven also by the fluid pressure inside the crack. Since the joint is the weakest
point in the structure, this evolutionary process determines the load bearing capacity
of the dam. In this paper the cracked joint is analysed through the cohesive model
proposed by Cervenka, Kishen and Saouma which takes into account the coupled
degradation of normal and tangential strength. A judicious choice of the mechanical
parameters required by the above mentioned model allows us to determine a stress
and displacement field at the crack tip that is admissible according to the ICOLD
benchmark from both a static and a kinematic point of view.

INTRODUCTION

The mechanical behaviour of joints plays a key role in concrete dam engineering
since the joint is the weakest point in the structure and therefore the evolutionary
crack process occurring along this line determines the global load bearing capacity.
In the scientific literature two problems are discussed:

• the problem of sliding along a pre-existing compressed discontinuity (see,
among others, [1]),

• the problem of crack initiation and propagation along an undamaged interface
(see [2], [3], [4]).

The latter problem is discussed below in the framework of the cohesive crack
models, introduced by Barenblatt and Dugdale for elastoplastic materials, and by
Hillerborg et al. for quasi-brittle materials. In this model, the nonlinear frac-
ture process zone (due to degradation mechanisms such as plastic micro-voiding
or micro-cracking) in front of the actual crack tip is lumped into a discrete line
(two-dimensional) or plane (three-dimensional) and is represented by a traction-
separation law across this line or plane. In a cohesive crack the stress field is not
singular.
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JOINT MODELS

A joint is a locus of possible displacement discontinuities. The separation phe-
nomenon is analysed in the plasticity framework since an irreversible process occurs.
The displacement discontinuity vector w is assumed to be the sum of a reversible
(superscript e) and an irreversible (superscript p) contribution:

ẇ = ẇe + ẇp and ṗ = K0 ẇe = K0 (ẇ − ẇp) (1)

Damage initiation phase

According to the benchmark [5], in the compression half-plane, the activation
function is the straight line forming the Coulomb friction angle µ with the horizontal
axis and passing through the point (0,c0) where c0 is the peak cohesion.

In the traction half-plane the benchmark recommends a negligible tensile strength.
For numerical reasons, this value was assumed χ0 = c0/10. The shape of the activa-
tion function is parabolic with tangent continuity across the vertical axis (see [5]).

The convex domain inside the activation function constitutes the region of elastic
behaviour of the joint, characterized by a 2×2 diagonal matrix Kn0, Kt0.

The point where damage initiation occurs is called fictitious crack tip (shortened
FCT). During the evolutionary process, it moves from the upstream edge to the
downstream edge.

Damage evolution phase

Once the activation function is achieved, irreversible displacements ẇp can de-
velop along the interface. The effective inelastic displacement weff proposed by [3]
is used:

ẇeff = ||ẇi|| =
√

ẇn
2 + ẇt

2 (2)

as kinematic internal variable driving the softening.
The inelastic displacement ẇi is the sum of plastic (unrecoverable) and fracture

(recoverable in tension only) displacements ẇp and ẇf respectively. Total displace-
ment discontinuities ẇ are obtained by adding the elastic term to the previous ones:

w = we + wp + wf (3)

Since wf enters explicitly in the expression of damage parameter D, while wp

does not, a distinction between the two inelastic terms is necessary.
The traction-displacement discontinuity relationship reads as follows:

ṗ = ρK0 ẇe = ρK0 (ẇ − ẇp) (4)

The matrix of elastic stiffness coefficients K0 is pre-multiplied by coefficient ρ
that is always equal to one in compression, and ranges from one to zero in tension
according to the level of damage D as follows:
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ρ = 1− |pn|+ pn

2 |pn| D (5)

Damage D is defined as the complement to one of the ratio between the current
normal stiffness Knc and the initial one Kn0.

D = 1− Knc

Kn0

(6)

In order to compute Knc a virtual configuration or equivalent uniaxial case is
considered in which only normal inelastic displacements have occurred:

wi
n = weff (7)

It is furthermore assumed that a constant portion γ of the inelastic displacement
wi

n is represented by the unrecoverable plastic displacement wp
n:

wp
n = γ wi

n (8)

With the hypotheses formulated above, it is possible to compute Knc (equation
3) and to take into account the fact that in mode I (without unloading) the value
of the normal traction pn coincides with the current normal strength χ function of
the softening variable weff .

Knc =
pn

wn − wp
n

=
χ(weff )

we
n + wp

n + wf
n − wp

n

=
χ(weff )

χ(weff )
Kn0

+ (1− γ) weff
(9)

Finally:

D = 1− χ(weff )

χ(weff ) + (1− γ) weffKn0

(10)

The way in which tensile strength and cohesion deteriorate with increasing effec-
tive inelastic displacement is specified by means of monolinear softening curves:

χ(weff ) = χ0

(
1− weff

wχ0

)
and c(weff ) = c0

(
1− weff

wc0

)
(11)

where χ0 represents the initial tensile strength (for weff = 0), c0 the initial
cohesion (for weff = 0), GI

F mode I fracture energy, GIIa
F asymptotic mode II fracture

energy, wχ0 value of weff for which tensile strength reaches zero (1.035 mm) and
wc0 the value of weff for which cohesion reaches zero (1.035 mm).
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Material Rock Concr.
parameter
Density [kg/m3] 2700 2400
Tensile strength [MPa] 2.6 1.3
Softening law linear linear
Young modulus [MPa] 41000 24000
Poisson’s ratio [–] 0.10 0.15
Mode I fracture energy [N/m] 200 150

Material Mean
parameter values
Normal stiffness [MPa/mm] 45
Shear stiffness [MPa/mm] 20
Peak cohesion [MPa] 0.7
Residual cohesion [MPa] 0.0
Tensile strength [MPa] 0.07
Friction angle [deg] 30
Dilatancy angle [deg] 10

Table 1. Material properties (left) and rock concrete interface properties (right).

WATER PRESSURE IN THE PROCESS ZONE

In the process zone the water pressure is assumed as proportional to the damage
level D. It means that the pressure at the real crack tip is the same as the pressure
acting in the reservoir at the same depth. This pressure vanishes at the fictitious
crack tip.

EXAMPLE OF APPLICATION

As an example of application, the benchmark problem proposed in 1999 by the
International Commission On Large Dams [5] was analysed (dam height 80m, base
60m). The gravity dam and the rock foundation were discretized through 4693
and 7295 plane strain 3-node triangles, respectively. In the area where the fracture
process zone is expected the element side is approximately 0.06 m. Table 1 show
the material properties assumed.

NUMERICAL RESULTS

The dam is analysed under self-weight, reservoir filling and imminent failure flood
loading conditions. Since the joint is the weakest part in the structure, the remaining
material behaves in a linear elastic way. Figures 1, 2, 3 and 4 are normalized by
using c0, wc0 .

Self-weight loading

In self-weight loading conditions, the dam and the foundation are perfectly tied
together along the zero-thickness joint. The stresses induced along the joint for
this mutual constraint are everywhere in elastic range. Therefore no displacement
discontinuity occurs.

Reservoir filling

For simplicity, during this phase the hypothesis of proportional loading was as-
sumed. Therefore, at the beginning of this phase, when the reservoir is empty, the
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external load multiplier vanishes. At the end of this phase, when the water level
achieves the dam crest, the external load multiplier achieves the value of 1.

Figures 1 and 2 show displacement and stress histories at a point located at 0.12
m from the upper edge of the joint in the case of efficient impervious membrane
(dry fracture) and in the case of water penetrating the crack (pressurized fracture),
respectively. In order to reduce the size of both figures, the compressive stresses,
which are negative, are plotted as positive. In the former case the decompression
occurs for an external load multiplier of 0.67. In the latter case this value reduces to
0.63. Both values are very small due to the conservative assumption that the joint
tensile strength is negligible (χ0 = c0/10). In both cases the activation function is
achieved in a tensile half-space so that tangential peak stresses are smaller than χ0.

In the case of pressurized fracture (Fig. 2), when the water level achieves the dam
crest (external load multiplier of 1) the crack is stress free. For the same load level
the dry crack is not yet stress free. In order to obtain a fully developed process zone,
the water level overtopping the dam load case is analysed.
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Figure 1. Tip response at 0.12 m from upstream side vs. load multiplier (dry
fracture).

Imminent failure flood

This load case induces a uniform increment in the water pressure acting on the
upper edge of the dam. In order to preserve the tangent continuity of the external
load multiplier through the value of 1, it was assumed that a value of 1.1 corresponds

867



0.5 0.6 0.7 0.8 0.9 1
Hydrostatic load multiplier (1 means full reservoir)

0

0.2

0.4

0.6

0.8

C
oh

es
iv

e 
tr

ac
tio

ns
/d

is
pl

ac
em

en
t d

is
co

nt
in

ui
tie

s
Nondimensional tangential stress
Nondimensional sliding
Nondimensional normal stress
Nondimensional opening

Figure 2. Tip response at 0.12 m from upstream side vs. load multiplier (pressurized
fracture).

to an overtopping water height of 0.1 the total dam height (0.1×80=8 m).
Figures 3 and 4 show displacement and stress histories at a point located at 2

m from the upper edge of the joint in the case of efficient impervious membrane
(dry fracture) and in the case of water penetrating the crack (pressurized fracture),
respectively. In order to reduce the size of both figures, the compressive stresses,
which are negative, are plotted as positive. In the former case the activation function
is achieved in tensile half-space so that tangential peak stresses are smaller than χ0.
In the latter case the activation function is achieved in the compressive half-space
so that tangential peak stresses are larger than χ0, due to Coulombian friction. In
both cases the condition of stress free crack is achieved during this load case.

COMPARISON WITH COULOMBIAN FRICTIONAL CRACK

Recently Karihaloo and Xiao [6] proposed to enrich the set of functions included
in a finite element mesh by using an analytical solution based on the assumption that
the two components of the cohesive stress are proportional. This enrichment can be
applied in the framework of the so-called XFEM/GFEM method. Figures 1, 2, 3
and 4 show at the fictitious crack tip a strong gradient in tangential stress and a
small gradient in normal stress. Of course, this gradient is related to the time domain
but, for the quasi-self-similarity of the problem, the same stress gradient appears
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Figure 3. Tip response at 2 m from upstream side vs. load multiplier (dry fracture).

in the space domain. At the real crack tip the hypothesis of cohesive proportional
stress appears more realistic. Since the smallest eigenvalue of the tangential stiff-
ness matrix is very small, it appears that, for the same load level, more than one
solution is possible. Therefore, we will not be surprised if some small change in the
mechanical model makes it possible to extend this proportionality condition from
the real crack tip to the fictitious one.

CONCLUSIONS

• The reference volume involved in the fracture process of a dam joint is so large
that it cannot be tested in a laboratory. Therefore this interaction has to be
simulated numerically.

• A judicious choice of the mechanical parameters required by the CKS joint
model allows us to determine a stress and displacement field at the crack tip
that is admissible according to the ICOLD benchmark from both a static and
a kinematic point of view.

• For the same set of mechanical and geometrical data, the hydromechanical
coupled fracture problem is more brittle than the dry one. The effect of the
pressurized water is not only an obvious reduction in the load carrying capacity
but also a reduction in the length of the process zone.
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Figure 4. Tip response at 2 m from upstream side vs. load multiplier (pressurized
fracture).
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[3] Červenka, J., Kishen, J. and Saouma, V. (1998) Mixed mode fracture of cementious bimaterial
interfaces; part II: Numerical simulations. Engineering Fracture Mechanics, 60(1), 95–107.

[4] Barpi, F. and Valente, S. (2008) Modeling water penetration at dam-foundation joint. Engi-
neering Fracture Mechanics, 75/3-4, 629–642. Elsevier Science Ltd. (Great Britain).

[5] ICOLD, Theme A2: Imminent failure flood for a concrete gravity dam. In Fifth International
Benchmark Workshop on Numerical Analysis of Dams. Denver (CO), 1999.

[6] Karihaloo, B. and Xiao, Q. (2008) Asymptotic fields at the tip of a cohesive crack. International
Journal of Fracture, 150, 55–74.

870


