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ABSTRACT. The presence of complex terms in the Williams’ asymptotic expansion of 
the near tip field of an interface crack makes the analysis of the crack propagation more 
intricate. Griffith’s criterion remains valid for the delamination growth because in this 
particular case the energy release rate does not involve oscillating terms. This is no 
longer true if the crack kinks out of the interface. Due to the oscillating terms, the 
energy release rate is ill-defined and it becomes impossible to extend Grifitth’s 
criterion. Taking the T-stress, i.e. the next term of the asymptotic expansion, into 
account allows getting rid of this difficulty thanks to a characteristic length derived 
from a two-fold criterion using both energy and stress conditions. 
  
 
INTRODUCTION   
 
It has been shown by one of the authors [1] that the initiation of a crack at a V-notch in 
a homogeneous material can be accurately predicted by a two-fold criterion based both 
on energy and stress conditions. Furthermore, the proposed criterion coincides with 
Griffith’s one for a pure crack (i.e. when the V-notch opening vanishes). As a 
consequence of exponents greater than 1  in Williams’ expansion in the general case, 
this nucleation process is shown to be unstable, the crack jumps a short length. The 
presence of the T-stress term leads to a similar reasoning which is carried out herein.  

2/

 
Energy condition  
The first condition results from an energy balance between two states of the structure 
prior and after the onset of a short crack increment. It states that, at initiation, the 
incremental energy release rate pG Wδ= − /  has to exceed the toughness  of the 
material, 

cG

pWδ  being the potential energy change and  the newly created crack length 
(within the plane elasticity framework, the 3D generalization is possible but presents 
some technical difficulties [2]). Note that the differential form used by Griffith is the 
limit of the incremental energy release rate as . This incremental form derives 
straightforwardly from the energy balance and is almost unquestionable whereas the 
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differential form is conditional since it requires the existence of the limit. For interface 
cracks, we see later that the limit exists only in case of delamination growth (i.e. the 
crack keeps propagating along the interface).  
 
Stress condition  
The second condition is based on the maximum tension that a material can sustain 
before failure. It states that fracture can occur only if the opening stress along the 
expected crack path exceeds the material tensile strength cσ . It reads cθθσ σ≥  where 

θθσ  is the hoop stress. It must be pointed out that, if there are oscillations, as it is the 
case for an interface crack, this inequality requires additional attention.  
 
Mixed criterion 
In the V-notch case, the compatibility between the two conditions gives an equation for 
the crack initiation length  provided the (real part of the) exponent c λ  of the 
singularity involved in the associated Williams’ expansion is strictly greater than 1/2 
[1]. Inserted in one or other of the above inequalities and using Williams’ expansion 
again, it leads to the final Irwin-like criterion 
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Where k  is the generalized stress intensity factor (GSIF) of the singular term of 
Williams’ expansion (i.e. the weight of the singular term),  its critical value defined 
as a function of the material toughness , of the tensile strength 

ck

cG cσ  and of the 
singularity exponent λ . In Eq. 1,  and s  are geometric coefficients depending on the 
direction 

A
α  chosen by the crack increment. 

In the particular case of a pre-existing crack, 1/ 2λ = , the second term of Eq. 1 
disappears and the above criterion coincides with Griffith’s condition.  
 
The presence of complex terms in the asymptotic expansion of the near tip field of an 
interface crack makes the analysis of the crack propagation more difficult as shown in 
the next section. 
 
 
THE INTERFACE CRACK  - THE LEADING TERMS OF THE EXPANSION 
 
The near tip field expands with two conjugate terms associated with the exponents 

1/ 2 iλ ε= ±  [3,4] (in Eq. 2 and in the sequel the upper bar denotes the complex 
conjugate)  
 

( )1/ 2 i 1/ 2 i 1/ 2 i
1 2( ) ( ) ( ) ( ) ... ( ) 2 ( )U x x U O Kr u Kr u U O Re Kr uε ε εθ θ θ+ − +, = + + + = + + ... (2) 
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Where  and r θ  are the polar coordinates emanating from O  (figure 1) and where  
holds for the complex stress intensity factor (SIF). It can be rewritten, introducing the 
mixed mode parameter  [4,5] 

K

( )m r
  

( )1/ 2 i 2i
1 2( ) ( ) ( ) ( ) ( )   with  ( ) KU x x U O Kr u m r u m r r

K
ε εθ θ+ −, = + + + ... =   (3) 

 

 
Figure 1. The interface crack growth, (a) delamination, (b) kink out of the interface. 

 
The incremental energy release rate for a crack increment  in the direction α  now 
writes [5,6] 
 

(2  ( ) ( ) '( ) ...G K K Re A m Aα α= + ) +     (4) 
 
Here the complex terms A  and 'A  play the role of the single real scaling coefficient A  
in Eq. 1. For a delamination crack 0α =  and '(0) 0A = , then it is clear that the energy 
condition  (using either the incremental or the differential form) is meaningful 
and can be used to predict the delamination growth. Note that  denotes here the 
interface toughness, a “material” parameter which is difficult both to define (because of 
the mixity of modes) and to determine experimentally [7,8]. 

cG G≥

cG

 
On the other hand, for a crack kinking out of the interface '( ) 0A α ≠ . Then, due to the 
term  (Eq. 3), the limit as → oes not exists, the differential energy release rate 
is ill-defined. Different authors have tried to overcome this difficulty by assuming either 
that the imaginary part 

( )m 0  d

ε  of the exponent, which is usually small, can be neglected  or 
by prescribing a given characteristic distance [9,10,11]. In the next section we show that 
the next term of Williams’ expansion (Eqs. 2 and 3) can be used to avoid this problem. 
 
 
THE ROLE OF THE T-STRESS 

he pioneering work in this domain is due to Cotterell and Rice [12] who investigated 
the influence of the T-stress on the kinking of a crack submitted to a biaxial loading 

 
T
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(mode I plus T-stress) in a homogeneous material. This topic has been recently revisited 
[13,14] leading to define a positive threshold of the T-stress below which no branching 
can occur as observed in some experiments [15]. 
In the case of an interfacial crack, Williams’ expansion takes the form 
 

1/ 2 i 1/ 2 i
1 2( ) ( ) ( ) ( ) ( ) ...U x x U O Kr u Kr u Trtε εθ θ θ+ −, = + + + +    (5) 

 
( )rt θWhere  is the first non singular term of the expansion, the ass

oes not grow to infinity but remains constant as . The coefficient  is the 
ociated stress field 

d 0r → T
corresponding intensity factor. Introducing a new mixed mode parameter ( )M r  allows 
writing 
 

1/ 2 i

1/ 2 i
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  with  1/ 2 i( ) TM r r
K

ε−=  

(6)
 
The energy condition takes the following form 

 

 
 ( , ( ),G KK X m Mα= ( )) ... cG+ ≥     (7) 

ith W
[ ]( , ( ), ( )) 2 ( ) ( ) '( ) ( ) ( ) ( ) ( ) ( ) ...M M C α+ +  X m M Re A m A M Bα α α α= + +

The new complex term
 

 B  and the real one  play roles similar to  and  (Eq. 4). 
he stress condition derived from Eq. 62 leads to 

C A 'A
T
 

2 ( , ( ), ( ))KK Y m M cθ σ      (8) 
ith  

≥
W

2( ) ( )M …τ θ +  ( , ( ), ( )) ( ) ( ) ( )Y m M s m sθθ θθ θθθ θ θ= + +

The compatibility between the two inequalities 7 and 8 gives an equation for the crack 
itiation length  as a function of  

 

in c α  
 

2

( c( ), ( ))
( , ( ), ( ))

c c
c

c c c

X m M G
Y m M
α
α σ
,

=      (9) 

 
It was not possible to extract such a length from Eq. 4 where  appears only through the 

scillating term in . It is now feasible thanks to the additional T-stress term which 
involves an exponent larger than 1/2. 
Finally Eq. 7 with  gives a condition on 

( )mo

c= K  for crack initiation in the directionα :  
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( ( ), ( ))cX m Mα,

he critical value

cGK Kα≥ =     (10) 
c

 
 KαT  depends on α  and the actual kink angle cα  maximizes the 

denominator, i.e. m izes inim Kα  (i.e. K   giving fK at fail
 

ure).  

( , ( ), ( )) ( , ( ), ( ))c cX m M X m Mc c cα α≥   α∀    (11) 
And 

( ( ), ( ))f
c c c

G
X m Mα

=
,

12) 

 
that Eq. 11 is not trivial since  is a function of 

cK      (

Note c α  (Eq. 9). This reasoning 
follows step by step that of the real case [1,5] (homo
the physical background is less rigo ecause of th

geneous material for instance) but 
e oscillating terms met in G  and rous b

θθσ . 
 
 
APPLICATION 
 
 

 
/ 0.2F L 5= , / 0.H LFigure 2. 3-point bending test, 2= . 

 
Elastic simulations are carried out on a notched bimaterial specimen in flexion (figure 
2) with a long debonding of the interface. The stiffer material is alternatively in the 
upper ( 1R > ) and lower ( 1R < ) position, R  is the Young’s modulus ratio, 0.3ν =

300 GPa,
 in 

both m ls Alumina,  ateria . Two different materials are considered:  1E =

1cσ = 400 MPa and 1cG =0.05 MPa.mm ( IcK = 4.06 MPa.m1/2), and PMMA 2E = 3 
GPa, 1cσ = 75 MPa and 1cG =0.35 MPa.mm ( IcK = 1.07 MPa.m1/2). When Alumina is in 
the upper position ( 1R > ) various contrasts re analysed for  a R  varying from 100 to 2. 
Similarly, when PMMA is in the upper position ( 1R < ) various contrasts are analysed 
for R  varying from 0.5 to 0.01. The particular case 1R =  (no contrast) is given for 
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comparison taking ( )+i I IIK K K  and 1
2

= ( ) ( ) i ( )I IIu u uθ θ θ= −  where the ind I 

and II hold for the classical modes I and II associated with a crack tip located in a 
homogeneous material. A constant force is applied in all cases. 
 
Results are presented in table 1. It is worth noting that the sign of 

ices 

ε  is a convention 
since both + and – o nsion ( s in the last two rows 
correspond on the left to the present analysis and on the right to a simplified analysis 
where T  is neglected (i.e. with 0T

ccur in the expa Eq. 2). The two term

=  in the equations). Results are almost similar for a 
ink of the interface crack in the more compliant material (i.e. Rk  varying from 0.01 to 

0.5). The ratio /f IcK K  remains the same and the kink angle does not exceed 50 deg. 
On the contrary the difference becomes significant when the kink occurs in the stiffer 
material. The ratio /f IcK K  is twice as high (for large contrasts) if T  is neglected. This 
means that the T-stress has a significant role in the crack kinking and omitting this term 
leads to overestimating the applied load at failure. Moreover, the kink angle quickly 
reaches 90 deg. as the contrast increases. 
 

Table 1. Numerical results. The right hand side term in the last two rows are obtained 
by neglecting T ,  i.e. with 0T =  in the equations. 

R  ε  Im( ) / Re( )K K  / Re( )T K  
(m-1/2) 

cα  (°) /f IcK K   

100 0.091 0.41 37.4 90 / 30 0.07 / 0.17 
75 0.090 0.38 31.6 90 / 30 0.09 / 0.21 
50 0.089 0.41 90 / 40 0.12 / 0.22  37.8 
10 0.075 0.49 62.8 70 0.23 / 0.2 / 40 8 
2 0.030 0.75 60 / 50 0.33 / 0.35 65.2 
1 0.000 0.93 81.8 60 / 50 0.38 / 0.39 

0.5 -0.030 -1.14 47.7 50 / 50 0.47 / 048 
0.1 -0.075 -1.49 15.8 40 / 40 0.63 / 0.63 
0.02 -0.089 -1.58 11.9 30 / 30 0.73 / 0.73 
0.13 -0.090 -1.59 -35.4 30 / 30 0.75 / 0.75 
0.01 -0.091 -1.59 -38.1 30 / 30 0.76 / 0.75 

 
 
CONCLU
 
W ns a kink in the stiffer material, neglecting the T-stress ase 
f  c to a sign discrepanc ms o l load gle 
rediction. In particular, the load at failure is overestimated and leads to a non-

iction. Nevertheless there are only few experiments to corroborate 
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An interesting feature to point out is the influence of the T-stress on the kink angle. It is 
almost 90 deg. if the crack grows in the stiff layer whereas it does not exceed 50 deg. if 
the crack grows in the compliant one.  It can be compared to the fracture pattern of a 
laminated ceramic (figure 3) made of compliant (light) and stiff (dark) layers [16]. 
However, the comparison has its limits since there are no large deflections of the crack 
along the interface as assumed in the present analysis (figure 2). 
 

 
Figure 3. Schematic fracture pattern of a laminated ceramic 

 
For a complete analysis the competition between the deflection mechanism and the 
delamination growth should be analysed. This requires the knowledge of the interface 
toughness and strength, which determination is difficult since it  commonly admitted 
that they depe k tip. 
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