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ABSTRACT. One of the main interests of fracture mechanics in functionally
graded materials is the influence of such an inhomogeneity on a crack propaga-
tion process. Using the Griffith’ energy principle, the change of energy has to be
calculated, if the crack starts to propagate. In homogeneous linear-elastic structures
(asymptotically precise) formulas for the energy release rate are known, but a direct
transfer of the methods to functionally graded materials can lead to very inaccurate
results. Moreover, the influence of the inhomogeneity on the crack path can not be
seen. Here a simple model for functionally graded materials is presented. For this
model, a formula for the change of potential energy is derived, giving detailed infor-
mation on the effect of the gradation on the crack growth process.

INTRODUCTION

In this contribution we present ideas how fatigue crack growth in anisotropic func-
tionally graded materials (FGMs) can be predicted using the Griffith’ energy
criterion for plane problems. Here FGM especially means, that the elastic proper-
ties can change continuously.

From a physical point of view the energy principle, formulated by Griffith

in 1921, can be applied in anisotropic and inhomogeneous materials to calculate
quasi-static crack propagation:

A crack is growing in such a way that the total energy always is minimal.

The total energy Π is composed from the surface energy S and the potential energy
U, the latter is the difference of the elastic energy and the work performed by ex-
ternal forces.

For homogeneous solids, the following result is known [1]: Suppose the crack is
increased by a (small) crack shoot of length h, then the change of the potential
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energy can be calculated asymptotically to

∆U = −1

2
K

⊤ · M(h) · K + O(h3/2), h→ 0. (1)

Thereby K denotes the vector of stress intensity factors and M(h) is a symmetric
2×2−matrix, the so called energy release matrix (ERM). For a straight crack shoot,
(1) is also well-known as Irwin-Rice-formula. The ERM contains certain integral
characteristics depending on the geometry of the specimen and the crack shoot as
well as on the elastic properties of the material. All entries of ERM can be cal-
culated numerically up to sufficient precision. Using the asymptotic energy release
rate the kink angle of a crack can be determined in arbitrary plane anisotropies and
the crack path can be approximated piecewise by polygons [2].

The derivation of formula (1) requires the asymptotic (Westergaard) represen-
tation of the displacement field at the crack tip. If the specimen under consideration
consists of a FGM, the first asymptotic term of the near field is the same as in the
homogeneous case with material properties frozen at the crack tip. It suggest itself
to use formula (1) with this material data to calculate energy release rates and this
method is known as ”local homogenization” [3]. However, if the material properties
vary to much near the crack tip, the resulting approximation (1) of the energy re-
lease can be very inaccurate.

In the following we discuss ideas to detect the influence of a local gradation on the
developing crack path. Introducing a function δ in the material properties, which
can be interpreted as a measure for the level of inhomogeneity, we single out asymp-
totic formulae for the change of the potential energy, if the crack propagates along
a small shoot. The influence of the function δ will be shown.

FORMULATION OF THE PROBLEM

Let Ω be a domain in the plane R
2 with polygonal boundary Γ. We consider the

problem of 2-dimensional linear elasticity theory in the domain Ω0 := Ω \Ξ0, where
Ξ0 := {x ∈ Ω : x1 ≤ 0, x2 = 0} is a rectilinear edge cut:

−∇ · σ(u;x) = 0, x ∈ Ω0,

σ(n)(u;x) = σ(u;x) · n(x) = 0, x ∈ Ξ+
0 ∪ Ξ−

0 ,

σ(n)(u;x) = σ(u;x) · n(x) = p(x), x ∈ Γ.

(2)

n = (n1, n2)
⊤ is the outward normal, u = (u1, u2)

⊤ the displacement field and
p = (p1, p2)

⊤ denotes the vector of surface load, assumed to be self-balanced. With
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Ξ+
0 and Ξ−

0 we denote the upper and lower sides of the crack, considered to be tension-
free. The coordinate system is chosen in such a way, that the crack tip x0 is at the ori-
gin. The strain tensor (in Cartesian coordinates) εij(u;x) = 1

2
(∂iuj(x) + ∂jui(x)),

i, j = 1, 2, is related to the stress tensor by Hooke’s law:

σij(u;x) =
2∑

k,l=1

akl
ij (x)εkl(u;x), i, j = 1, 2.

a(x) = akl
ij (x) is a symmetric rank-4 tensor, i.e. in an anisotropic material there are

6 different elastic moduli. For the strain tensor, we also use the vector notation

ε(u;x) :=
(
ε11(u;x), ε22(u;x),

√
2ε12(u;x)

)⊤
.

Then, for the stress tensor (in vector notation) the relation holds

σ(u;x) = A(x) · ε(u;x) =
(
σ11(u;x), σ22(u;x),

√
2σ12(u;x)

)⊤

with the matrix function

A(x) =




a11(x) a21(x)
√

2a31(x)

a21(x) a22(x)
√

2a32(x)√
2a31(x)

√
2a32(x) 2a33(x)


 (3)

symmetric and positive definite in every point x ∈ Ω, containing the elastic moduli.
A(x) is called the mathematical Hooke tensor or Hooke matrix (Voigt notation).
The factor

√
2 ensures, that strains (and stresses) have the same Euclidean norm,

in vector and in tensor notation.

A model for functionally graded materials.

Let us assume, that the specimen under consideration is composed of a FGM. With
this notion we relate the following: The Hooke matrix depends (continuously)
on the space coordinates. Our main interest is to detect the influence of such an
inhomogeneity on the fracture process. But if the material properties depend on six
(different!) functions, there is no real chance to see which of them cause an effect on
the crack path. Therefore, we simplify the problem and introduce just one (scalar)
function in the material properties:

A(x) := A+ δ(x)B

where δ is a smooth and bounded function. A,B ∈ R
3×3 are (constant) symmetric

matrices of type (3). We always suppose that the matrix function A(x) is symmetric
and positive definite in every point x ∈ R

2. The function δ can be understood as a
measure of the level of the gradation.
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ASYMPTOTIC DECOMPOSITION AT THE CRACK TIP

In a solid consisting of a functionally graded material with Hooke matrix A(x) =
A+ δ(x)B the displacement field has an asymptotic (Westergaard) expansion of
the following type at the crack tip x0 = 0 [4]:

u(x) = KIU
I
0 (x) +KIIU

II
0 (x) + . . . , |x| → 0. (4)

KI and KII are the stress intensity factors (SIFs) and the (generalized) eigenfunc-
tions

U j
0 (x) = r1/2Φj(ϕ), j = I, II,

where (r, ϕ) are plane polar coordinates, are solutions of the homogeneous elasticity
problem in the whole plane with a semi-infinite cut:

−∇ · σ0(U j
0 ;x) = 0, x ∈ R

2 \ Ξ∞, Ξ∞ := {x : x1 ≤ 0, x2 = 0},

σ0
12(U

j
0 ;x1, 0) = 0, σ0

22(U
j
0 ;x1, 0) = 0, x1 < 0. (5)

Here, σ0 = A0 : ε is the stress tensor with material properties A0 = A + δ(x0)B
frozen at the crack tip. Due to [5], the functions U j

0 can be normalized to the
following condition for every plane anisotropy:

[U I
0 ](−r) =

8√
2π

(A−1
0 )11

√
r

(
0

1

)
, [U II

0 ](−r) =
8√
2π

(A−1
0 )11

√
r

(
1

0

)
. (6)

Here, [u](x1) = u(x1,+0) − u(x1,−0) is the jump over the crack surfaces. For this
normalization of the near field, SIFs are given by the limit

Kj =

√
2π

8(A−1
0 )11

lim
x→−0

1√
r
[u3−j](x1), j = 1, 2.

Generalized eigenfunctions are known explicitly for isotropic materials and some
classes of anisotropic ones [6]. For general anisotropies, they can be computed nu-
merically up to arbitrary precision.

Griffith’ ENERGY CRITERION

For calculating quasi-static crack growth in FGMs, the energy principle can be used,
formulated in the introduction. The total energy Π is the sum of the surface energy
S and the potential energy U:

Π = S + U = S +
1

2

∫

Ω0

σij(u)εij(u) dx−
∫

Γ

g · u ds = S − 1

2

∫

Γ

g · u ds.
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Here, we use the sum convention and g · u = giui. The last equation follows from
Clapeyron’s theorem. Let uh be the solution to problem (2) in the solid Ωh, where
the crack has propagated along a small shoot Υh of (small) length h. For simplicity,
we suppose that the shoot is a linear polygon, starting from the tip of the crack Ξ0

at an angle θ ∈ (−π, π):

Υh(θ) := {x : 0 ≤ x1 ≤ h cos(θ), x2 = x1 tan(θ)}

The change in the potential energy produced by crack propagation can be calculated
using Clapeyron’s theorem:

∆U = U
h − U = −1

2

∫

Γ

(uh − u) · g ds =
1

2

∑

±

∫

Υ±

h
(θ)

uh · σ(n)(u) ds. (7)

At the new crack tip xtip = h(cos(θ), sin(θ))⊤, the displacement field uh has an
expansion similar to (4):

uh(y) = uh(xtip) +Kh
1 Û

1,1
tip (y) +Kh

2 Û
2,1
tip (y) + . . . , |y| → 0, (8)

where y denote local Cartesian (crack) coordinates at xtip directing along Υh(θ).

Û j,k
tip are related to the homogeneous elasticity problem (5) with Hooke matrix

Â(xtip) = Â(θ) + δ(xtip)B̂(θ), where Â, B̂ are the Hooke tensors A,B, rotated to
crack coordinates y (see e.g. [6] for more details). Kh

i are the SIFs at the new
tip. To evaluate formula (7), we replace uh and u by their asymptotic expansions
at the new crack tip xtip and at x0 respectively. Using the jump relations (6) and
expansions (4) and (8), short calculations lead to

∆U ≈ C(θ)
2∑

i=1

Kh
3−i

∫

Υh(θ)

(h− |x|)1/2σ
(n)
i (u;x) ds

= C(θ)
2∑

i,j=1

Kh
3−iK

0
j

(
Φ̃j,1

i (A; θ)h+ Φ̃j,1
i (B; θ)

h∫

0

√
h− r

r
δ(r, θ) dr

)
+ O(h3/2)

where r−1/2Φ̃j,k
i are components related to the normal stresses of the eigenfunctions:

r−1/2Φ̃j,k
i (A; θ) = − sin(θ)σA

i1(U
j,k
0 ;x) + cos(θ)σA

i2(U
j,k
0 ;x), x ∈ Υh(θ),

r−1/2Φ̃j,k
i (B; θ) = − sin(θ)σB

i1(U
j,k
0 ;x) + cos(θ)σB

i2(U
j,k
0 ;x), i, j = 1, 2.

We write δ(r, θ) := δ(r cos(θ), r sin(θ)). The integral on the right hand side can be
calculated by partial integration:

h∫

0

√
h− r

r
δ(r, θ) dr =

π

2
δ(xtip)h−

h∫

0

ψ(r)

(
cos(θ)∂x1

δ(r, θ) + sin(θ)∂x2
δ(r, θ)

)
dr
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where ∂xj
δ(r, θ) = ∂xj

δ(x)
∣∣
x∈Υh(θ)

and ψ is the monotone increasing and positive

function

ψ(r) =
√
h− r

√
r + h arctan

( √
r√

h− r

)
thus 0 ≤ ψ(r) ≤ π

2
h.

The function C(θ) = − 4√
2π

(
Â(xtip)

−1
)

11
(see condition (6)) can be calculated ex-

actly and depends on the function δ as well as on the crack shoot Υh(θ). Finally,
we get

∆U ≈ C(θ)
2∑

i,j=1

Kh
3−iK

0
j

((
Φ̃j,1

i (A; θ) + Φ̃j,1
i (B; θ)

π

2
δ(xtip)

)
h (9)

−Φ̃j,1
i (B; θ)

h∫

0

ψ(r)
(
cos(θ)∂x1

δ(r, θ) + sin(θ)∂x2
δ(r, θ)

)
dr

)
+ O(h3/2).

Because the function δ is smooth and bounded, the integral in (9) can be estimated
and is of order h. But this would be a loss of information. In principle, this integral
is the change of δ along the shoot Υh(θ). All terms can be calculated for any smooth
function δ and any angle θ. This formula is a first step to detect the influence of
local inhomogeneities on the crack path.

EXAMPLES AND CONCLUSIONS

Finally, we show first numerical results and consider a symmetric compact tension
(CTS-)specimen subjected to a Mode-II-loading (see Figure 1). The length units
are selected to w = 90mm, the thickness of the specimen is 10mm and we apply
a force F = 10000N . We choose a local gradation only in one space direction (see
Fig. 2):

A(x) = (1 + δ(x))A, δ(x) :=

{
0.5 sin

(
(x1−20)

5
π
)

20. < x1 < 25.

0 otherwise

Because this function is not smooth, we flatten out A(x) at the points x1 = 20 and
x1 = 25. This is only technical and we go not into details. The elastic moduli are
a11 = a22 = λ + 2µ, a21 = λ, a31 = a32 = 0, a33 = µ with λ = 56023N/mm2, µ =
26364N/mm2, corresponding to aluminium alloy 7075 − T651. Our motivation of
this simple example is just: "What can happen, if the material is locally functionally
graded?"
Numerical computations are done with deal.II (dealii.org) and the meshgenerator
Cubit 11.0 (cubit.sandia.gov). To calculate SIFs, we use weight functions and solve a
pure Neumann problem without clamping the specimen, see [2, 7] for more details.
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Figure 1: CTS-specimen

For the isotropic material, the computed crack path is shown in Fig. 3. We set
h = 0.5mm and the simulation is stopped after 47 steps, when a critical SIF KV =
0.5KI + 0.5

√
K2

I + 5.336K2
II = 972N/mm3/2 is reached [8]. The crack path in the

functionally graded specimen is shown in Fig. 2. We stop the simulation after 60
steps and it seems that the gradation "pushes away" the crack.
We want to emphasize, that for the simulation of a crack growth process one has
to take into account surface energy. It is the nature of this problem, that crack
propagation depends on fracture toughness or in this context called surface energy.
In an isotropic material, surface energy can be assumed to be constant and this is
taken into account in the isotropic example. But in an inhomogeneous anisotropic
structure, surface energy depends on the direction of the crack and the position of
the crack tip to. The crack path shown in Fig. 2 is calculated without taking into
account surface energy! Our simulation gives no information about the speed of the
crack, because we do not have any data for surface energy here. One can assume that
surface energy is constant in the isotropic homogeneous part of the specimen and
this would not have an influence on the shape of the crack path itself. But we are
not sure, if or if not a gradation influences fracture toughness in the whole structure.
This example only shows the influence of an inhomogeneous Hooke tensor.
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Figure 2: Functionally graded Figure 3: Aluminium 7075-T651
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