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ABSTRACT. In the present contribution the joint of orthotropic materials is modelled 

as an orthotropic bi-material notch. The singular stress field near the notch tip is 

investigated. Depending on the notch geometry and materials, the stress singularity 

exponents are determined. A criterion for the direction of crack nucleation is 

formulated based on angular dependences of the mean value of tangential stress in the 

notch tip vicinity. For various combinations of the orthotropic parts of the bi-material 

notch the crack initiation direction was investigated by means of the finite element 

method as well as on the basis of the analytical-numerical approach described in the 

paper. Results of both methods are mutually compared and discussed. 

 

 

INTRODUCTION   
 

Modern technical constructions very often contain composite materials (e.g. layered 

composite materials, constructions with protective surface layers, thermal barriers). 

They enable achievement of properties which could not be attained by means of 

homogeneous materials. On the other hand, compound structures lead to geometrical 

and material discontinuities and thus to singular stress concentrations with a general 

stress singularity exponent different from 1/2. Such stress concentrators preclude any 

application of the fracture mechanics approaches originally developed for a crack in 

isotropic homogeneous materials. Further, the orthotropic material properties seriously 

complicate procedures for assessment of bi-material wedge stability. Most such 

discontinuities can be mathematically modelled as bi-material notches composed of two 

orthotropic materials. The edge of a protective coating, a free edge stress singularity or 

other shapes of notches can be modelled for varying angles 1 and 2.  

In the contribution the orthotropic bi-material notch is analysed from the perspective 

of linear elastic fracture mechanics, i.e. the validity of small-scale yielding conditions is 

assumed. We further assume ideal adhesion at the bi-material interface and the notch 

radius R  0 (a sharp bi-material notch).  

The aim of the contribution is to suggest a procedure for the determination of the 

direction of crack initiation from a bi-material notch composed of two orthotropic parts. 
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The approach is based on the knowledge of the stress distribution in the place of the 

concentration. A criterion of the maximal tangential stress is modified and adapted to 

particularities of the nature of the stress concentrator. For the determination of the 

fracture initiation direction both analytical and numerical techniques are employed. The 

results are presented for specific notch geometry for the varying ratio of Young’s 

moduli EMx/EMy of both materials. 

 

 

STRESS DISTRIBUTION   
 

Singular stress fields usually occur near the tip of a sharp interfacial corner, and their 

nature has been the subject of a number of studies. Consider the bi-material notch 

composed of two orthotropic parts as shown in Fig. 1. Within plane elasticity of 

anisotropic media the Lekhnitskii-Eshelby-Stroh (LES) formalism based on [1,2,3] can 

be used. Complex potentials satisfying the equilibrium and the compatibility conditions 

as well as the linear stress-strain dependence and given boundary conditions are the 

basis for the determination of stress and deformation fields. In the case of general plane 

anisotropic elasticity all the components of the stress and deformation tensors have to be 

considered. In the case of orthotropic materials symmetry in the stiffness and 

compliance matrices occur. Thus the stress and strain tensor is significantly reduced. 

According to the LES theory for an orthotropic material, the relations for deformations 

and stresses can be written as follows: 
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where ij j j      are the eigenvalues of the elastic constants, j jz x y  and for 

matrices Aij and Lij holds: 
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In order to express the stress compoments in polar coordinates the stress function 

 i   is used, where  2Re ( )i ij j jL f z  , and the radial and tangential stresses are 

then expressed as: 

 

 , ,rr r r r            n t m t n t m t , (3) 

 

where    cos ,sin , sin ,cosT T     n m  and , ,

1
,r r

r
    t t . In the case 

of the studied notch, the potential fj has the following form: 
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*H zf v , (4) 

 

where H is the generalized stress intensity factor (it can generally be complex), vi is a 

complex eigenvector corresponding to the eigenvalue , where 1 1 ( i )        

represents the exponent of the stress singularity at the notch tip. Eigenvector vi and 

eigenvalue  are the solution of the eigenvalue problem leading from the prescribed 

notch boundary and compatibility conditions. The expression 
*z
  is a diagonal matrix 

for which 
* 1 2diag ,z z z      . 

Then the relation between the polar coordinates (r,) and the coordinates (Ri,i) in 

the plane of Re(zi), Im(zi): 
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From the relations (2) and (4) we get the potentials: 
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Finally, the stress components in polar coordinates are obtained via the relations (3). 

Further we assume the existence of more than one singular term. In the following the 

subscript k denotes the pertinence to the specific stress singularity exponent 1-k: 
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In most practical cases, as well as in the cases studied in the paper, there are two 

singular terms corresponding to two stress singularity exponents 1-1 and 1-2. Note 

that for the final determination of the stress field in the bi-material notch vicinity the 

generalized stress intensity factors have to be estimated by means of numerical 
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approaches. Their values result from a numerical solution for a certain construction with 

given material properties, geometry and boundary conditions. 

 

 

GENERALIZED STRESS INTENSITY FACTORS DETERMINATION   
 

In order to determine the final stress distribution around a bi-material notch, it is 

important to find out the value of the generalized stress intensity factors (GSIFs) H from 

the numerical solution to a concrete situation with a given geometry, materials and 

boundary conditions. In contrast with the determination of the K factor for a crack in an 

isotropic homogeneous medium, for the ascertainment of a GSIF H there is no 

procedure incorporated in the calculation systems. The calculation of H is not trivial and 

requires certain experience. In the case of an orthotropic bi-material notch the GSIFs 

can be determined using the so-called -integral [4]. This method is an implication of 

Betti's reciprocity theorem which in the absence of body forces states that the following 

integral is path-independent. 

The definition of the -integral: 

 

 ˆ ˆ ˆ( , ) ( ( ) ( ) )dij i j ij i jn u n u s 


  u u u u     for i, j = 1, 2 (9) 

 

The contour Γ surrounds the notch tip and ˆ,u u are two admissible displacement 

fields. The displacements uj are considered as the regular solution and ˆ
ju as the auxiliary 

solution of the eigenvalue problem of the notch, for the eigenvalues it holds ̂   . A 

major advantage of the integral is its path independence for the case of multimaterial 

wedges. For the contour Γ closely surrounding the notch tip, the -integral: 
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where the constants c1
M

, ..., c4
M

 are given by definite integrals independent of r. The 

superscript M = I, II corresponds to the material regions I and II bounded by the angles 

(0, 1) for the material region I, and (–2, 0) for the material II. 

 

 

CRACK INITIATION DIRECTION   
 

The stress field around a bi-material notch inherently covers combined normal and 

shear modes of loading. For mixed mode fields a crack may grow along the interface or 

at a certain angle 0 with the interface into material I or II. In the present paper where 

the two orthotropic materials are assumed as perfectly bonded, only crack propagation 

into materials I or II will be supposed. Erdogan and Sih [5] proposed and Smith et al. 

[6] modified the MTS theory in a study on the slant crack under mixed mode I/II 

loading, see also [7]. This criterion states that the crack is initiated in the direction θ0 
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where the circumferential stress σθθ at some distance from the crack tip has its 

maximum and reaches a critical tensile value. The local maximum of the tangential 

stress σθθ in the case of a bi-material orthotropic notch depends on the radial distance r 

from the notch tip. In order to suppress the influence of the distance r, the mean value of 

the tangential stress is evaluated over a certain distance d: 
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The distance d has to be chosen in dependence on the mechanism of a rupture, e.g. as 

a dimension of a plastic zone or as a size of material grain. The distance d can also be 

chosen by means of the theory of critical distances, see [8]. The mean value of the 

tangential stress is determined in dependence on the polar angle . 

The potential direction of crack initiation is determined from the maximum of the 

mean value of tangential stress in both materials. The following two conditions have to 

be satisfied: 
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Using (8), (11) and (12) the first derivation it follows: 
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It can be shown that in the case of existence of twofold singularity (k = 1, 2) the 

crack initiation angle 0 is independent of the absolute values of GSIFs, but it depends 

only on their ratio H2/H1 (obtained from FEM). The maximum of M can exist in both 

material I in the interval (0; 1) and material II in the interval (-2; 0). If there are more 

than one direction of possible crack initiation, it is necessary to consider all of them.  

 

 

NUMERICAL EXAMPLE   
 

A rectangular bi-material notch composed of two orthotropic parts was considered in 

the numerical example. The geometry of the notch is characterized by the angles 1 = 

90°, 2 = 180° and is shown in the fig. 1. The combination of materials was chosen in 

order to gain the influence of orthotropy of the substrate on the crack initiation angle. 

The upper layer has constant material characteristics described by Young’s moduli in 

the longitudinal and transversal directions ExI = 100 GPa, EyI = 50 GPa. The following 

four pairs of elastic moduli of the substrate were considered: ExII/EyII = {50/50; 100/50; 
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200/50; 400/50} GPa. The varying input values of the elastic moduli in the directions x 

and y can be achieved by a varying volume percentage and orientation of fibres in a 

matrix. Poisson’s constants of both the layer and the substrate were taken as xyI = xyI = 

0.3. The stress singularity exponents follow from the geometry and material 

characteristics and they are stated in the table 1 below. 

 

Figure 1. Configuration of a bi-material orthotropic notch with a detail of the finite 

element mesh. 

 

The numerical study was performed in the finite element method (FEM) system 

ANSYS. All the material combinations were subjected to applied load appl = 100 MPa 

in the direction as shown in fig. 1. The stress field around the notch tip was analysed 

and the mean values of the tangential stress M  were evaluated in dependence on .  

The averaging distance d was chosen according to the size of the region with a 

significant stress gradient in front of the notch tip. In order to outline the effect of 

sensitivity of the criteria on the distance d, all the calculations were also performed for a 

varying distance d.  

The results of the FEM analysis are shown in the figure 2. The left graph a) shows 

the dependences of the mean value of the tangential stress  on the polar coordinate  

for all the material combinations. Data for these curves were calculated for the distance 

d = 510
-5

 m. The positions of the extremes, namely the maxima, indicate potential 

crack initiation directions. The directions for all the material combinations are oriented 

into the substrate and depend on the ratio of Young’s moduli in the axes x and y.  

The right graph, figure 2b) shows the dependence of the presumed crack initiation 

angles 0 for all the material combinations on the averaging distance d. The distance d 

was varied in the interval 210
-6

; 410
-4
 m.  

Parallel to the FEM analysis of the stress field, the analytical-numerical approach of 

the crack initiation direction was performed. This approach followed the considerations 

mentioned above. The stress singularity exponents 1- were ascertained from the notch 

geometry and elastic constants of both materials. The GSIFs were estimated on the basis 

of -integral, see eq. (10). Finally, the initiation direction was estimated from the 

relation (13) from the ratio of GSIFs H2/H1. Table 1 states the eigenvalues k. Although 

they can generally be complex, in the studied cases kwas real only, Im(k) = 0. From 

the ratio of the GSIFs H2/H1 the theoretical crack initiation direction was solved for d 

chosen as d = 210
-6

. The size of d (within the theoretical study) was taken according to 

4
 appl  

Mat. II 

Mat. I 

2
5

m
m

 

1 

2 
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the size of the region where the first (singular) term of the stress series plays a 

significant role. In this region the dependence of the theoretical solution of 0 on d was 

weak, i.e. 0 was practically constant in the notch tip vicinity. 

 

Figure 2. a) Dependence of the mean value of the tangential stress  on the polar 

coordinate , b) Presumed crack initiation angle 0 vs. the averaging distance d. 

 

 

Table 1. Inputs and results of the theoretical study 

 

Material I:  EIx = 100 GPa, EIy = 50 GPa 

Material II:  

   
[EIIx;EIIy] (GPa) [100; 50] [200; 50] [400; 50] 

 0.544 0.557 0.573 

2 0.910 0.926 0.941 

H2/H1 [m
1-2] 11.76 8.34 6.22 

0 [°]  -52.1 -60.2 -66.7 

 

As to the directions resulting from FEM, it is evident from the fig. 2 that the crack 

initiation directions are influenced by d especially for smaller values of the distance d. 

But at the same time, for the small d, the results of FEM studies covering all terms of 

the stress series tend to the values obtained from the theoretical solution considering the 

first singular term only. For larger regions, used for the mean value evaluation, the 

influence of the notch tip on the stress field weakens and the values of 0 tend to the 

direction perpendicular to the applied stress. As far as d is concerned, it is necessary to 

consider the failure mechanism as well. It can be said that it relates to the first increment 

of the newly initiated crack. 

a)                                                                  b) 
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CONCLUSIONS   
 

The procedure for the determination of the direction of crack initiation from an 

orthotropic bi-material notch based on the knowledge of angular distribution of the 

mean value of the tangential stress has been presented. The expression for the 

distribution of the mean value of the tangential stress is derived as a function of the 

generalized stress intensity factors H1 and H2. It is concluded that for the estimation of 

the crack initiation direction 0 both existing stress singular terms have to be taken into 

account, and 0 = 0 (H2/H1). The determination of the initial crack propagation angle is 

one of the necessary steps for service-life evaluation of constructions containing 

compound materials. The procedure makes it possible to assess to which material 

component and in which direction the initiated crack will propagate. Consequently, the 

behaviour of a crack growing in composite materials is predicted and it can be used to 

increase the reliability of service-life estimation. 
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