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ABSTRACT. A damage model applicable to ceramics subjected to dynamic compressive loading 
has been developed. The model was based on damage micromechanics and wing crack nucleation 
and growth. Tension wing cracks nucleated and propagated from the tip of the sliding cracks in the 
direction of maximum applied compression when the stress-intensity factor reached its critical value. 
The rate of crack growth was governed by a universal relation in dynamic fracture for high strain 
rate. The failure of the material was linked to a critical density of damage. The model predicted the 
failure or peak strength to increase with increasing shock loading. The results of the dynamic 
damage evolution model were compared with the experimental results and a good agreement was 
found. 
 
 
INTRODUCTION 
 

Ceramic materials carry many initial defects, such as grain boundaries, 
micro-cracks, and pores. Under compressive loads, secondary cracks are induced 
around these defects. Through scanning electron microscope and acoustic emission 
examinations, the growth and nucleation of these cracks are revealed to dominate the 
failure and macroscopic mechanical properties of the ceramic materials [1,2]. After 
these observations, researchers began to focus more on the behaviors of cracks through 
experimental and analytical methods in an effort to study the mechanical properties of 
ceramic materials under compressive loads. Several micromechanics-based cracks 
models have been proposed since[3-6]. G.Ravichandran[7] presented the 
micromechanical model for aluminum nitride in the strain rate range of 

6 3 15 10 2 10 s− −× ×∼ . The model was based on non-interacting sliding micro-cracks that 
were uniformly distributed in the material and predicted the failure or peak strength to 
increase with increasing strain rate. Deng and Nemat-Nasser[8] studied the constitutive 
behavior of brittle materials subjected to compressive loading has been under stress 
pulse loading. 

The objective of paper is to develop a micromechanical damage model based on 
the nucleation and growth of wing cracks for alumina under high strain rate.  
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CONSTITUTIVE MODEL 
 
Sliding crack model 

The sliding crack model as a mechanism has been widely accepted to study brittle 
materials under compressive loads. As shown in Fig. 1, an initial crack, at a length of 

2c , oriented at angle γ  with respect to the 1σ  direction, and a pair of curved tensile 

cracks, nucleate at the tips of the preexisting model flaw and grow with the increase of 
compression and finally become parallel to the direction of the maximum far-field 
compression.  

 

 

 

 

 

 

 

 
    
When the local resolved shear stress along the crack plane exceeds the threshold shear 
friction, sliding occurs. With a continued increase in applied compressive load, the 
growth of a tensile crack will be initiated when the stress intensity factor IK  of the 
tensile crack equal to the model Ⅰ fracture toughness. Assuming no interaction 
existing between cracks, the stress intensity factor at the tip of sliding crack can be 
written as  

                   2
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l l
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                             (1) 

where F  represents the effective sliding force on the crack plane, 2F cτ ∗= , and l  is 

the tensional crack length, 0.27l c∗ = . 

 

Crack nucleation and growth criterion 
Assume that the micro-cracks growth is governed by a critical stress intensity 

factor, and the growth will be sustained provided that  
D
ICID KK =                                (2) 

Figure 1. Sliding crack model  

696



where IDK is the dynamic stress intensity factor, and 
IC

DK  is the dynamic fracture 
toughness, which is assumed to be independent to the strain rate. 
   The stress intensity factor that drives the growth of wing cracks of the length IDK  

is a function of the current length of crack l  and the velocity of cracks growth l� .  So 
we can write  

             ( , ) ( ) ( ,0)ID IK l l k l K l=� �                          (3) 
where   
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The cracks grow by either the increasing compression or the nucleation of cracks. 
The nucleation of cracks is assumed to satisfy the Weibull distribution [9] 

mN kε=                               (5) 
where N is the number of micro-cracks; ,k m  are the material parameters. 

Many experimental results indicated that the nucleation, growth, and interaction of 
micro-cracks played an important role in the damage and failure of brittle materials. 
Under axial strain compression, the fracture mechanism is very complicated 
corresponding to the confining pressure. It has been revealed that brittle materials fail 
via axial splitting under axial compression when the confining pressure is zero or close 
to zero, or via the shear failure when the confining pressure is moderate and still below 
the brittle-ductile transition value [3]. 

A body cell containing a sliding crack is considered under applied biaxial 
compression. The induced axial and lateral strains are 1ε  and 2ε , respectively. The 
induced strains can be divided into two parts as: 
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where 1
eε and 2

eε  are elastic strains associated with the alumina material without 
cracks under compressive stress, and 1

dε  and 2
dε  are non-elastic due to the growth of 

the sliding cracks. 
The elastic strains can be written as  
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where E  and v  are the Young’s modulus and Poisson’s ratio of alumina, respectively, 
at 3 4k v= −  for the plane strain condition. 

The non-elastic strains are derived by the energy equilibrium equation shown below. 
According to the body containing a sliding crack shown in Fig. 1 under compressive 
loads, the energy equilibrium equation is  
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=1W fe WU +2                               (8) 
where 1W  is the work / energy performed by the applied loads, eU  is the energy 
dissipated by the growth of tensile cracks, and fW  is the frictional dissipation energy 
due to the sliding of the initial crack. 

Under fixed loading conditions, the work done by the applied loads 1 2,σ σ  on the 
additional displacements is  

1 1 1 2 24 ( )W bh σ ε σ ε= Δ + Δ                         (9) 
where 4bh  is the volume of a unit thickness cell, and 1 2,ε εΔ Δ  are the strain 
increments in 1ε  and 2ε  due to each crack, respectively.  

Based on the linearity of the problem under consideration, the strains increments 
( 1εΔ  and 2εΔ ) due to the growth of the sliding crack are assumed to be linearly 
dependent on the applied compressive stress 1σ  and 2σ  as  
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where ( , 1, 2)ijS i j =  are constants and 12 21S S= . 
The work done by the applied loads is then 

)2(4 2
2221221

2
1111 σσσσ SSSbhW ++=                  (11) 

There are two crack tips in the model. The strain energy dissipated at each crack tip 
can be expressed by a stress intensity factor IK   
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Substituting Eq. (1) into Eq. (12) and then integrating it, the strain energy can be given 
as 
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Under the shear stress ignoring the crack spacing the sliding displacement δ  can be 

written as [7]  
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Then frictional dissipation energy due to sliding of the initial crack is then 
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Based on Eqs. (8), (11), (13), and (15), 221211 ,, SSS can be solved by comparing the 

coefficients of the quadratic terms as 
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The coefficients of 1 2 3 4 5, , , ,A A A A A related to the length of tensional crack l , 

1 2 3 4 1 2 3 4 5 1, , , , , , , , ,B B B B C C C C C D  related to the initial crack length 2c , and crack 
orientation θ  were given in the reference[10]. 

     For a body containing N  sliding cracks, and if crack interactions are not 

considered, the total non-elastic strain can be calculated as 1

2

N
ε
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strains induced from the applied compressive loads can be calculated by 
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Under dynamic uniaxial compressive loads, 2 0ε = , and the constitutive 
relationship of the alumina is reduced to the following forms  
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              (18)  

Under uniaxial strain conditions, lateral stress 2 1(1 ) (1 2 )v vσ σ= − − , and then the 
constitutive relationship with respect to the 1σ  direction can be given as 
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Analysis and results 
Figure 2 shows that the failure stress and failure strain decrease with the increase of 

k . An increase in the value of m  causes a decrease in the number of active 
micro-cracks per unit volume, and the fracture strength should increase with increasing 
m . From Fig.2, both the failure stress and failure strain decrease with the increase of 
the initial crack size, which has strong influences over the failure strength. The larger 
initial pre-flaws of the material, the easier to produce micro-cracks and to decrease the 
failure strength. 

  
 
 
 
 

 

 

 

 
 

 

 

 

 

 

 
To validate the model predications, the stress-strain curves of uniaxial strain 

Figure 2 Influence of parameters k  and m  on failure stress and failure strain 

Figure 3 The influence of initial crack length on 
failure stress and failure strain  

Figure 4 Comparison of experimental 
results and model prediction 
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compression under dynamic loading are calculated based on the constitutive model. The 
results of the Lagrange analysis are used as the experimental stress-strain curves under 
unixial strain compressions[11-12]. The strain rate is about 5 -110 s . Several parameter 
values, such as , , 2 ,k m c μ , are chosen appropriately. The initial crack length is set the 
same as the grain size. In calculations here, 1910 , 6,2 60 , 0.7k m c mμ μ= = = = are 
adopted. The dynamic failure toughness IDK  is assumed to be static ICK . The Young’s 
modulus and Poisson’s ratio of the alumina are set as 120 GPa and 0.228, respectively, 
in the present analysis. Fig. 4 shows the stress-strain curves of the alumina at a high 
strain rate from the micromechanical modeling and it reveals that the stress-strain curve 
is likely to be elastic during the initial stage and then seems to be non-elastic due to the 
crack nucleation and the growth of the cracks under higher pressure. The constitutive 
model predictions appear to agree well with the experimental results. 
 
 
CONCLUSIONS 
 

The micromechanical constitutive model was developed to study the mechanical 
properties of the alumina under dynamic multi-axial compressive loading. The model 
took into account of the nucleation and growth of cracks. The crack growth law was 
derived based on dynamic fracture mechanisms. The effects of parameters of both the 
micro-cracks nucleation and the initial crack size on the dynamic fracture strength were 
discussed. The stress-strain curves obtained from the micromechanical model agree well 
with the experimental results. 
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