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ABSTRACT. This paper discusses a new method for damage detection based on the 

most fundamental concept in continuum mechanics: strain compatibility. Compliance 

with this principle implies a deformed material is free from discontinuities, which are 

indicative of many types of structural damage. Therefore the principle of strain 

compatibility, in its ability to identify discontinuities, is very promising as a new 

foundation for future research into non-destructive evaluation and structural health 

monitoring technologies. The proposed method has many advantages compared to 

existing damage detection techniques, such as its invariance to material properties and 

the geometry of the structure. To illustrate the application of this technique, the 

detection of damage in beam structures is investigated. The formulation of the strain 

compatibility equation for beam structures is introduced and numerical simulations 

carried out to detect crack and delamination damage in a cantilever beam. The 

simulations demonstrate that the strain compatibility technique shows high potential for 

locating and quantifying the severity of damage in beam structures. 

 
 
INTRODUCTION   

 

Non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques 
are normally based on general physical principles or phenomena accompanying the 
presence or development of structural damage. However, previous research into damage 
detection has overlooked one of the fundamental principles of continuum mechanics – 
the principle of strain compatibility. Compliance with this principle implies a deformed 
material is free from discontinuities, indicative of many types of structural damage such 
as cracks and delamination. Therefore the principle of strain compatibility is very 
promising as a new technique for future NDE and SHM technologies [1]. 

Strain compatibility equations were first derived by Saint-Venant in 1860 and are 
used to solve various problems, particularly in the theory of elasticity where the concept 
of compatibility has mathematical and physical significance [2].  From a mathematical 
point of view, this theory asserts the components of displacement match the geometrical 
boundary conditions and are single-valued, continuous functions of position, with which 
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the strains are associated. In general, the kinematical relationships, between strains and 
displacement components, connect six independent components of the strain matrix to 
only three components of the displacement vector; therefore the strain components are 
not independent of one another. This idea, represented by the equations of 
compatibility, establishes the geometrically possible forms of strain variations from 
point to point within a body.  

Physically, the principle of strain compatibility implies a deformed body must be 
pieced together with no gaps, overlaps or other 
discontinuities, as shown in Fig.1.  It is evident 
from the above interpretation that the nature of the 
principle of compatibility is closely related to 
typical structural damage and, therefore, can serve 
as a basis for the development of NDE techniques. 

Conceptually a damage detection system can 
consist of built-in (or surface-mounted) passive 
elements (eg. strain gauges or piezoelectric patches) 
or use non-contact strain measurement techniques 
(eg. laser Doppler vibrometry [3]). The loading can 
be due to normal operation or induced intentionally 
(by active sources) to detect damage. The sensor 
elements form clusters of various shapes and sizes, 
which can be used to measure the non-compliance 
of the measured strain field with the theoretical 
strain compatibility conditions. 

The proposed method has many advantages in comparison with existing NDE 
technologies.  The most important of these is that the method is applicable to isotropic 
and anisotropic materials experiencing elastic and non-elastic deformations, in curved 
or flat surfaces. In addition, the method is robust as the output signals from the clusters 
are invariant to loading conditions, for example, accidental loading or changes in the 
boundary conditions will not lead to false alarms 

Interestingly, methods based on modal curvature measurements are closely related to 
strain compatibility. These methods have been employed and investigated in the past 
fifteen years for structural damage identification, however, the links between modal 
curvature methods and the principle of strain compatibility has never been recognized. 
These curvature methods include the absolute difference method, damage factor, 
damage index, shape method, gapped smooth method [4, 5], a trous Laplace operator 
[6], smoothed Teager energy operator [6], frequency response function curvature 
method, damage localization vector method [7-9] to name a few. Assuming that the 
original healthy structure produces smooth curvature without irregularity, these methods 
normally utilise a curve-fitting technique to find the local variability in structural 
stiffness associated with delamination damage. Curvature measurement based methods 
have proven to be very effective in detecting, locating, and quantifying local damage. 
However, the success of damage identification depends strongly on the quality and 
selection of the parameters involved when curve fitting, which could be different for 

 
 

Figure 1. Illustration of strain 
compatibility principle 
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varying geometries and loading conditions [1].  
Therefore, the strain compatibility principle provides a rigorous theoretical 

foundation to the existing curvature based NDE techniques and will allow the 
development of damage detection procedures that are invariant to material properties, 
type and intensity of loading, and the geometry of the structure. 
 
 
STRAIN COMPATIBILITY ALGORITHM 

 
Thin Plate and Shell Components 

The most general form of three-dimensional strain compatibility conditions are 
represented by a system of six homogeneous partial differential equations. It is well 
known that in the case of a very thin isotropic plate (utilising Kirchhoff hypotheses, 
small-deflection theory or classical theory) these six equations reduce to a single 
homogeneous Laplace equation with respect to the sum of the principle strain 
components [2] as  
 ∂2(εx + εy)/∂x2 + ∂2(εx + εy)/∂y2 = 0 , (1) 
where ε is the normal strain and x and y are the Cartesian coordinates. 

For the practical implementation of Eq. 1, a finite difference representation can be 
utilised. In recent work conducted by Wildy et al. [2], a central difference scheme was 
used to model a damage detection system to monitor cracks in wide plates. However, 
this work will focus on detection of crack damage and delamination damage in 
cantilever beams.  
 
Beam Components 

For beam components (one-dimensional system) in bending, the strain compatibility 
equation (Eq. 1) takes the simple form of 
 ∂2εx/∂x2 = 0 , (2) 
where εx is the extensional deformation on the surface of a slender beam and can be 
calculated through the deflection of the beam as 
 εx = h ∂2w/∂x2 , (3) 
where h is the height of the beam and ∂2w/∂x2 (= κ) is the local curvature of the beam.  

Finally, the compatibility equation can be reduced to the following equation, which 
will hold for the undamaged beam: 
 ∂4w/∂x4 = 0 . (4) 

The use of a 4th order least squares fit of the out-of-plane displacements can be 
utilised to determine strain compatibility (Eq. 4) and alleviate the adverse effect of 
noise. At each measurement point on the beam the fitted out-of-plane displacement is  
 P(xi) = ai xi4 + bi xi3 + ci xi2 + di xi + ei , i = 1,2,..., N (5) 
where ai, bi, ci, di and ei are real constants, P(xi) is the 4th order least square fit of the 
out-of-plane displacement at measurement point xi, i is the measurement point of 
interest and N is the total amount of measurement points. The constants can be solved 
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by evaluating,  
  ┌      ┐┌  ┐   ┌  ┐ 
  │ 1 xi-n xi-n

2 xi-n3 xi-n4 ││ ei │   │ wi-n │ 
  │  :  :  :  :  :  ││  di  │   │ : │ 
 W │ 1 xi xi

2 xi
3 xi

4 ││ ci │ = W │ wi │ , n = 2, 3, 4, … (6) 
  │ : : : : : ││ bi │   │ : │ 
  │ 1  xi+n  xi+n2 xi+n3 xi+n4 ││ ai │   │ wi+n │ 
  └      ┘└  ┘   └  ┘ 
where (2n + 1) is the number of neighbouring measurement points used for the fit 
around each point and W is a diagonal weighting matrix.  

In the subsequent simulations the following weighting function was used to 
determine the diagonal weighting coefficients, which biases the fit around points in the 
vicinity of the point i. 
 Wj = cos [ π (xi+j – xi) / (xi+n – xi-n) ], j = –n, –n+1, … , n . (7) 

The above weighting function can only be applies to regular spaced grids and, thus, 
the measurement grid chosen in the subsequent simulations is equally spaced. 

Consequently, if Eq. 4 is applied to Eq. 5, the residual strain compatibility is left 
 ∆i = ai  (8) 
where ∆i is the residual strain compatibility. 
 
 
NUMERICAL SIMULATIONS  

 
To investigate the potential of the strain compatibility technique for damage 
identification, two damage scenarios have been considered for a cantilever beam with a 
force applied at its end; a single transverse edge crack and a delaminated section. The 
two models were developed and non-dimensionalised with out-of-plane displacement 
and beam position parameters represented, respectively, as 
 w

* = (w E I ) / (P L3) & x
* = x / L . (9) 

To simulate real measurement conditions, a moderate level of noise was added (SNR 
= 65 dB) to the numerically generated displacements and a realistic number of 
measurement points was selected (N = 1001, eg. for a one meter beam, the measurement 
point would be spaced 1mm apart, which is feasible for a scanning laser vibrometer). 
 
Crack Damage 

To model the single transverse edge crack, using Euler-Bernoulli beam theory, a linear 
rotational spring (KT) was used to approximate the crack (as seen in Fig. 3) and is a 
function of beam height (h) and crack length (a). Details of this approximation have 
been omitted in this paper and can be found in [10]. For the following simulation a 
beam height (h) of 0.006L (eg. for a one meter beam, the beam height would be 6mm) 
and a crack position (Lc) of 0.4L was used.   

Figures 4 and 5 illustrate the effect of varying parameters on the acquired strain 
compatibility (Eq. 8) along the cracked cantilever beam. Firstly, the effect of 
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incremental crack growth (Fig. 4) and, secondly, the effect of the number of 
measurement points used to determine the least squares fit (2n + 1) (Fig. 5). Table 1 
details the specific parameters use in each figure. 
 

   
 (a) (b) 

Figure 3. (a) Physical and (b) theoretical model of the cracked cantilever beam. 
 
 

Table 1. Parameters used in Figs 4 and 5 
 

Figure a/h n 

4 0, 0.3 & 0.5 100 
5 0.3 50, 100 & 150 

 
(a) 

 

(b) 

 

(c) 

 
 

Figure 4. Acquired strain compatibility (∆i) at a range of locations along the cracked 
cantilever beam for three different crack length to beam width ratios (a/h). 

 
(a) 

 

(b) 

 

(c) 

 
 

Figures 5. Acquired strain compatibility (∆i) at a range of locations along the cracked 
cantilever beam for three different amounts of measurement points (2n + 1) used to 

evaluate the least squares fit of the out-of-plane displacement. 
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Delamination Damage 

To model the delaminated cantilever beam, a section of the beam is given a reduced 
flexural rigidity, as seen in Fig 6. Figures 7 to 9 illustrate the effect of varying 
parameters on the acquired strain compatibility along the delaminated cantilever beam. 
Firstly, the effect of incremental damage severity in the delaminated zone (Fig. 7), 
secondly, the effect of the number of measurement points used to determine the least 
squares fit of the out-of-plane displacement (2n + 1) (Fig. 8), and finally, the effect of 
incremental growth of the delaminated section (Fig. 9). Table 2 details the specific 
parameters use in each figure. 
 

   
 (a) (b) 
Figure 6. (a) Physical and (b) approximated model of the delaminated cantilever beam. 
 
 

Table 2. Parameter used in Figs 7 to 9. 
 

Figure E2I2/E1I1 n La/L Lb/L 

7 0.8, 0.65 & 0.5 100 0.4 0.5 
8 0.65 50, 100 &150 0.4 0.5 
9 0.65 100 0.4 0.41, 0.45 & 0.5 

 
(a) 

 

(b) 

 

(c) 

 
 

Figure 7. Acquired strain compatibility (∆i) at a range of locations along the 
delaminated cantilever beam for three different reductions in modulus of elasticity and 

moment of inertia in the delaminated section (E2I2/E1I1). 
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(a) 

 

(b) 

 

(c) 

 
 

Figure 8. Acquired strain compatibility (∆i) at a range of locations along the 
delaminated cantilever beam for three different amounts of measurement points used to 

evaluate the least squares fit of the out-of-plane displacement (2n + 1). 
 

(a) 

 

(b) 

 

(c) 

 
 

Figure 9. Acquired strain compatibility (∆i) at a range of locations along the 
delaminated cantilever beam for three different delaminated section sizes. 

 
 
SUMMARY OF RESULTS 

 
Figures 4 and 7 show the residual strain compatibility (∆i) for crack and delamination 
damage, respectively, in a cantilever beam versus increases with damage intensity. As 
the intensity of the damage increases, a spike in the residual strain compatibility is 
observed at the location of the damage, which increases with the intensity. 

Figures 5 and 8 show the residual strain compatibility (∆i) for crack and delamination 
damage, respectively, in a cantilever beam versus three different amounts of 
measurement point used to evaluate the least squares fit of the out-of-plane 
displacement (2n + 1). These figures illustrate that, with an increase in the amount of 
measurement points used to evaluate the least squares fit, there is an increased ability to 
detect the damage. However, with an increase in the amount of measurement points 
used there is also a reduction of the same amount in the range in which the residual 
strain can be calculated for. Therefore, an optimum number of measurement points is 
required to evaluated the least squares fit, in order to detect damage effectively. 

Figure 9 shows the residual strain compatibility (∆i) for delamination damage in a 
cantilever beam versus increases in the delaminated section size. As seen in Figs 4 and 
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7, an increase in the size of the delaminated section produces a spike in residual strain 
compatibility at the damage location. However, an increase in the size of the 
delaminated section causes the spike to increase in magnitude, but also in width, 
matching the size of the delaminated section. 

 
 
CONCLUSION 
 
A new technique for the detection of damage in beam structures loaded in bending, 
which is based on the concept of strain compatibility, has been presented. This 
technique utilizes strain compatibility conditions to determine violations of these 
conditions for localized areas and, therefore, indicates the presence of cracks, 
delamination and other types of damage. The major features of this technique are that 
the strain compatibility equations hold for all material properties and the technique can 
be applied to structures with elastic and non-elastic deformations. 

Simulations were conducted, utilising the newly proposed damage algorithm, for two 
damage scenarios: delamination damage and crack damage in a cantilever beam. The 
results from these simulations demonstrate that this algorithm has high potential for 
locating and quantifying the severity of damage in beam structures. 

Future work will focus on validating the technique for identifying delamination 
damage in laminated composite beams, involving the use of a Polytec 3D laser scanning 
vibrometer to measure the out-of-plane displacements and, in addition, investigate the 
potential of various algorithms for determining strain compatibility. 
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