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ABSTRACT. The present paper deals with the global criterion based on a variational 
principle of the crack theory to estimate the crack path in the case of brittle fracture. 
The variational principle of the crack path on the surface of a solid as the minimum of 
the certain functional was formulated. The crack path is interpreted as a generalized 
geodesic line on the solid surface. Crack path estimations based on a variational 
principle have been done for a circular cone under torsion, a plane weakened by a 
circular hole, a half-plane under a concentrated force. 
 
 
INTRODUCTION  
 
There are two basic approaches in crack path analysis, namely, differential (piecewise) 
methods based on local fracture criteria and integral (global) method.  

Differential methods are based on the determination of an angle between the initial 
and subsequent directions of the crack propagation. In this case, each small load 
increment is suggested to be accompanied by a correspondent increment of the crack 
length. An angle of crack propagation is evaluated by means of the known local fracture 
criterion that defines the line along which the crack length increases. Various fracture 
criteria have been currently employed for a crack path computation, namely, the 
maximum circumferential stress criterion, the maximum energy release rate criterion, 
criterion of the minimum energy consumption for fracture, criterion of the minimum 
strain energy density, the J-integral theory. The details of these basic approaches in 
crack path analysis can be found in the literature (e.g., [1, 2]). 

The integral methods presume determination of equation of the crack propagation 
line by a single stress analysis for a solid either containing a crack or no crack. The 
present paper deals with the global criterion based on a variational principle of the crack 
theory to estimate the crack path at once [3, 4].  
 
 
VARIATIONAL PRINCIPLE 
 
The crack propagation is assumed to be represented by mechanical motion of the crack 
tip as a material particle with the effective mass that is moving at the crack tip [5]. The 
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optimal crack path of such crack motion leads to the variational problem which is given 
by the following equation  
 
                                                               0=Lδ .                                                            (1) 
 
For a no planar surface the functional L is written as follows 
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Here, ( )vu,Φ is the weight function which depends on the stresses (or strains) in the 
uncracked body. The crack path on the solid surface has been described by the radius-
vector which is given by equation ),( vurr = , where u and v are curvilinear coordinates 
of a point which belongs to the crack path.  Coefficients E, F, G for first quadratic form 
of the solid surface are given in the form 
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For the flat plate the functional L can be represented by equation 
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An extremal which should be determined from Eq. 1 is equation of the crack path. 

Boundary conditions from one end to the other end of the crack path can be various and 
depends on a formulation of the problem. Equation 1 allows interpreting the crack path 
as a geodesic line on the solid surface. The geodesic line is the shortest line between 

points (A and B) on the surface and satisfies the condition 0=∫
B

A

dsδ . Moreover, the 

crack propagates in such a way that the energy lost in creating a new crack surface has 
the minimal energy value. From this assumption it also follows that the crack path is a 
geodesic line on the surface under consideration [6].  

However, the crack path can be not determined only by the geometry of a solid. 
Therefore, it is assumed that the length element is skewed by the stress state. A metric 
of the generalized geodesic line depends on the stress state in the untracked solid, 

namely, dsds Φ=* , i.e. 0* =∫
B

A

dsδ [6, 7]. There are many remarkable properties of 

geodesic lines. A choice of the function Φ as well as the Lagrange function in integral 
variational principles of physics advances in solution of the problem under 
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consideration. For brittle fracture the function Φ could be assumed to be proportional to 
the maximum principal stress or strain in the uncracked solid [6, 7].  

The crack path can be calculated from the Euler-Lagrange equation for the 
corresponding functional  
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where ( ) ( )2''2, vGFvEvuH ++Φ= .         
It should be noted that the end of a crack path can be another crack or a free surface 

of a solid. From the minimum of the functional (Eqs 1 and 5) and the transversally 
condition 
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it follows that the geodesic line should be normal to the free surface of a solid 
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Here, ( ) 0, =vuT is the equation of the line on which the crack path is ended. Thus, the 
crack must propagate at right angles to other cracks or free surfaces of a solid [6]. 

To demonstrate the variational principle in the crack path problem, the following 
crack path estimations have been considered.  
 
 
RESULTS OF CRACK PATH ANALYSIS 
 
Crack path estimations based on a variational principle have been done for a circular 
cone under torsion, a plane weakened by a circular hole, a half-plane under a 
concentrated force. 
 
A circular cone  
A circular cone is loaded by torsion M at the vertex. In this case, the maximum 
principal stress is written as follows 
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where u is the radial distance from the vertex to the point under consideration, θ2 is the 
angle at the cone vertex. Here, the weight function Φ is assumed to be the maximum 
principal stress 1σ . The functional L from Eq. 2 leads to the following equation 
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where v is the angle between two generatrixs on the cone surface. The Euler-Lagrange 
equation takes the following form 
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The solution of this equation leads to the crack path 
 
                                                   ( )θsin2sin0 vuu = ,                                                 (11) 

 
where 0u is a constant.  

It can be seen that Eq. 11 allows describing the crack path in the double circular cone 
caused by a torque (Fig. 1). 

 

 
 

Figure 1. Fractured surface of the double Plexiglas circular cone under torsion. 
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A circular hole in a plate  
An infinite plate contains a circular hole which is subjected to internal pressure p . The 
maximum principal stress is given by the following equation 
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where a is the radius of the hole. The hole contour is described by 
equation 222 ayx =+ . The minimum of the functional from Eqs 1 and 4 in the form 
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leads to the Euler-Lagrange equation 
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The particular solution of this equation is kxy = , where k is a constant. It means that 
cracking should occur along the radial lines. This phenomenon is observed in the test 
that is illustrated in Fig. 2. 
 

 
 

Figure 2. The Plexiglas plate with radial cracks as a result of bullet penetration. 
 
A half-plane under a concentrated force  
Let us consider a half-plane or a dihedral angle whose boundary or vertex are subjected 
to normal or symmetrical concentrated force P . It is suggested that the function Φ is 
proportional to the maximum strain 1ε , i.e. 
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Here, ν is Poisson’s ratio, E is the elastic modulus. The solution of the variational 
problem in the form 
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leads to the following equation 
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One solution of Eq. 17 gives 0=y , i.e. the crack propagates along the straight line 
corresponding to the direction of the applied force. It can be seen that the crack grows 
along the straight line in the glass wedge from the point of compressive force 
application at upper end of the wedge (Fig. 3). Moreover, the crack approachs a 
boundary of the wedge at right angle to free surface according to Eq. 7. 

Another solution, namely, 222 Ryx =+  is true for tensile force applied to the upper 
end of the wedge. In this case, the crack path has the form of a circular arc that is 
illustrated in Fig. 4. It should be noted that a small notch was made before the test to 
initiate the crack. 

 

 
Figure 3. The crack path in the glass wedge under concentrated compressive force 

applied at the upper end of the wedge. 
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Figure 4. The crack path in the Plexiglas wedge under tension loading. 

 
 
CONCLUSIONS 
 
The variational principle of the crack path on the surface as the minimum of the certain 
functional was formulated. The variational principle allows interpreting the crack path 
as a generalized geodesic line on the solid surface. The functional includes the weight 
function which depends on the stress state in the uncracked solid and sought functions 
which describe the crack path. For example, for brittle cracking the weight function 
could be assumed to be proportional to the maximum principal stress or strain in the 
uncracked solid.  

From the minimum of the functional and the transversally condition, it follows that 
the geodesic line should be normal to other cracks or the free surface of a solid. 

To demonstrate the variational principle in the crack path problem, the crack path 
estimations have been done for a circular cone under torsion, a plane weakened by a 
circular hole, a half-plane under a concentrated force. 
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