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ABSTRACT. The fracture energy dissipated by a crack growing in a composite 
material can be influenced by different material parameters which are affected by the 
manufacturing process. In case of brittle composite materials, failure mechanisms like 
debonding of the matrix-fiber interface or fiber breakage can result in crack deflection 
and hence in the improvement of the damage tolerance of the material. While some 
material parameters affect dissipative processes during crack growth, others influence 
the crack path. Concerning simulations of crack growth the cohesive element method 
provides a framework to model the fracture considering strength, stiffness and failure 
energy in an integrated manner. Combination with the discontinuous Galerkin method 
allows to investigate the influence of different cohesive parameters and crack paths on 
the fracture energy dissipation to optimize the toughness of the considered composite. 
 
 
INTRODUCTION 
 
In order to investigate the possibility of influencing crack propagation in composite 
materials we apply simulation methods which use the concept of cohesive elements that 
have been introduced in [1] and developed further in [2]. While in these papers crack 
paths in a fixed domain of a specimen supplied with defined material properties are 
considered we aim at the simulation of cracks inside different materials of a composite 
specimen paying attention to various possibilities of cracking processes like fibre 
debonding and fibre breakage. A good introduction into numerical properties of 
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cohesive elements and into discretization issues can be found in [3]. Nitsche proposed 
in [4] a method to enforce Dirichlet boundary conditions in a weak sense. Subsequently, 
different versions of so called Discontinuous Galerkin (DG) methods have been based 
on that idea. We take advantage of the use of a DG method as described in [5]. Thereby 
continuity of the stresses at cohesive elements is enforced without the necessity of 
questionable determination of penalization parameters for that issue. Following [5] 
penalization is used for stabilization of the method and for avoiding interpenetration of 
opposite crack sides. By applying a combination of the FEM with cohesive elements 
and the DG method, crack paths do not have to be prescribed at the beginning of 
simulations as done in [2] but rely on a stress criterion. This way varying material 
parameters and geometrical data of composites may cause different crack paths 
effecting various amount of energy dissipation. Our objective to maximize the amount 
of fracture energy for a given load scenario by adjusting material parameters is 
motivated by studies demonstrating that energy dissipation processes in brittle matrix 
composites provide toughening of the material. Assuming that homogenization 
techniques will allow application of the received results to more complicated structures 
we consider a unit cell of one fibre inside a matrix material. 
 
 
THEORY AND APPROACH 
 
We consider a bounded domain filled with matrix material, where a fibre with 
rectangular shape is placed inside  The fiber and matrix materials are in general 
anisotropic. The domain  is fixed at the Dirichlet part  of the boundary  
and an external force  is applied to the Neumann part . We will use the 
Einstein summation convention for summation over repeated indices in the following. A 
crack  is assumed to exist in . There are no volume forces considered, and linear 
elasticity with displacement field , strain tensor  and stress 
tensor  is assumed. The elasticity tensor 

 is symmetric in the sense of  and fulfills 
. 

 
Cohesive element approach 
Processes in the so called cohesive zone around a crack tip play a decisive role for 
energy dissipation. In [6] an overview to different possibilities of modeling these effects 
and some material science based overview on different cohesive processes can be 
found. In our studies we account for the cohesive effects at small crack openings by 
establishing so called cohesive forces  according to cohesive laws. These laws are 
characterized by the values of critical stress , which corresponds to the maximal value 
of the cohesive force achieved and the critical energy release rate , which corresponds 
to the area embedded between the curve and the horizontal axis, where the crack 
opening  is depicted. As from our point of view the value of  is much more 
important than the specific shape of the curve (see [6] for different possibilities), we 
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confine our considerations to initially rigid so called UBER (universal binding energy 
relation [7]) laws with a shape depicted in Figure 1 a). In our studies we pay attention to 
forces introduced by normal as well as by tangential displacement of opposite crack 
sides. Therefore we dispose the crack opening  into its normal part  and its 
tangential part  by  with  unit vector normal and  unit vector 
tangential to the crack surface. According to suitable laws with UBER shape the parts 

and can be calculated and the cohesive force for a certain point on the 
crack is obtained as combination of both parts according to  with 

 and . Following [8]  is chosen as . 
For the simulation of cohesive forces in combination with FEM we apply the widely 
used approach of cohesive elements explained in detail in the mentioned literature. Here 
we confine ourselves to give a justification of additional terms in the variational 
formulation of the elasticity problem due to the contribution of cohesive elements. For 
the sake of simplicity, we confine the consideration to one single cohesive element. This 
element is placed somewhere in the domain between two continuous elements and a 
crack may propagate through this element (Figure 1 b)). For a cohesive element two 
cases may appear. It may stay closed, because a certain criterion for opening is not 
fulfilled, and therefore no crack path is supposed in that element. In that case it is 
necessary to enforce continuity of the displacement field and of the stresses 

 at the cohesive element boundary  where  denotes the 
jump along  and the normal  is defined as . The equation  
can be written as –  so that the integral along  inside the variational 
formulation of the elasticity problem with test function  takes the form 
 

 

 
where the definition  is used. If, in the other case, crack 
development through a cohesive element is supposed and the element is therefore 
opened, the displacement field becomes discontinuous at  and cohesive forces  
are introduced according to – . It is, therefore, obvious that 
 

          
    

Figure 1. a) Rigid cohesive law            b) Scheme of a cohesive Element 
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cohesive forces along  are contrary to cohesive forces along , which reflects the 
closing effect of the cohesive forces. Furthermore, it can be deduced that             

 is still fulfilled which shows that the normal part of the stress field 
is still continuous at .  Inside the variational formulation the contribution of the 
cohesive forces appears as  
 

 

 
Discontinuous Galerkin method 
Regarding the remarks in the last section, it is obvious that the nodes of cohesive 
elements have to be held together during simulation in the pre-failure regime. As 
proposed in [5] this can be achieved by applying a type of DG method, which induces a 
weak enforcement of continuity at the interface by making use of Nitsche's method [4]. 
The elasticity problem considered in our studies consists in finding 

 on  on  so that the variational formulation 
 is fulfilled . The equation  includes the integrals of the 

variational formulation of the elasticity problem as well as the integrals addressed in the 
last section and additional integrals stemming from application of the DG method to 
achieve symmetry of the bilinear form  and coercivity of the problem 
formulation while consistency is guaranteed. Inside the variational formulation some 
terms concern integrals along cohesive elements as long as they are closed, while others 
have to be introduced for opened cohesive elements. In order to receive a complete 
variational formulation including all explained terms, a parameter  is introduced which 
takes for each cohesive element the value  if a crack should propagate through this 
element and  if the element should stay closed. The complete variational formulation 
for the whole domain  with  then takes the form 
 

 

 
The second term in the brackets in the second integral on left hand side of Eq. 3 
recovers the symmetry of the bilinear form, while the first term in the third integral on 
the left hand side ensures the coercivity of the bilinear form for large enough  
and, therefore, provides positive definiteness of the corresponding system matrix 
received after discretization of the problem. See [9] for detailed proofs of this 
statements. References for the choice of  can be found in [5]. During simulations the 
parameter  will be set to  or  for each cohesive element separately according to the 
stresses at that element. Thereby the stresses referring to the tangential direction 

 and to the normal direction  will be taken into account. 
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Comparing the value  with the value of critical stress  given 
by the cohesive law offers a stress criterion for checking if opening of a cohesive 
element is indicated. 
 
 
MAXIMIZATION OF FRACTURE ENERGY 
 
Our aim is to maximize the energy dissipated by a crack, i.e. the so called fracture 
energy, for a given load scenario. Stresses inside the material inducing crack 
propagation are due to external loads by boundary forces  or boundary displacements 

 in our studies. The fracture energy  at the end of the simulation is determined as  
 

 

 
Eq. 4 gives reference to different possibilities for maximizing . Obviously, increasing 
of  can be achieved by adjusting values of the cohesive laws as well as by varying the 
crack path. In our studies the cohesive parameters for both bulk matrix and fiber have 
been obtained after a renormalization of first principle (DFT) parameters taking  as 
invariant [10]. Two limiting cases are considered: I. the crack path is completely 
prescribed, and II. the crack path is completely free. 
 
Studies with prescribed crack paths 
In order to compare the influence of different material parameters on the fracture energy 
for fibre debonding and fibre breakage we start by separately considering two 
prescribed crack paths as depicted in the models in Figure 2. The matrix material is 
printed in yellow, the fibre material in blue and the crack path in red. The displacement 
at the upper boundary is increased during simulation up to a value that at each point on 
the crack an opening  is reached at which the cohesive forces are considered to be 
zero. As can be seen in Table 1 in case of fibre debonding, increasing the value of  
of the interface while keeping  and the values of the fibre ( , 

) and matrix ( , ) constant increases the 
 

           
 

Figure 2. a) Model for fibre debonding b) Model for fibre breakage 
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value of . Higher values of  for constant  will also yield higher fracture 
energy as long as  is not yet reached at all points of the crack along the interface, 
but at the end of the simulation almost the same fracture energy is reached for different 
values of . This can be seen in Figure 3, where on the horizontal axis the vertical 
displacement  is depicted and on the vertical axis the fracture energy . According to 
Eq. 4 increasing the crack length also results in higher values of . For the fibre 
parameters mentioned above and the values ,  for the 
interface a crack of the same length inside the fibre will cause higher fracture energy 
than along the interface. But as can be seen in Table 2 by varying the length width ratio 

 of the fibre and thereby the crack length higher fracture energy is attainable for 
fibre debonding ( ) than for fibre breakage ( ) for . 
 
 

Table 1. Fracture energy for varying  and constant  
 

 2 4 6 10 
 2.75 3.56 5.50 6.47 

 
 

Table 2. Fracture energy for different length/ width ratio  of the fibre 
 

 12/1 3/1 4/3 3/4 1/3 
 3.38 3.24 3.29 3.18 3.48 
 5.00 3.83 3.44 3.25 3.05 

 
 
Studies with free crack paths 
When prescribing crack paths, it has to be kept in mind that the supposed scenario 
might not be realistic for all considered cohesive parameters, because the stresses in the 
material make the crack propagate in a different manner. This issue is taken into 
account if free crack paths instead of prescribed ones are simulated and a stress criterion 
as explained above is applied. We now consider a load scenario as shown in Figure 2, 
but with an external force  instead of a displacement . Instead of the complete 
prescribed crack paths there is an incipient crack supposed ending before the fibre is 
reached. The stress distribution introduced by that scenario can be seen in Figure 4 a). 
An example for a crack path received for a certain load  and with the cohesive values 

, , , , , 
 can be seen in Figure 4 b). Another example with same loading 

conditions and values for matrix and interface, but with , 
 is depicted in Figure 4 c). The crack paths have been received stepwise 

according to the cracking criterion. In this way, the full complexity of crack 
propagation, including crack branching and bridging can be captured. For energy 
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calculations  has to be considered as separated into disjoint parts , , 
. The fracture energy at the end of the simulation has to be calculated as sum over 

all distributions of the single crack pieces. For each crack  again the possibilities 
considered above can be thought of for increasing the fracture energy . However, for 
a systematic study, we will have to return to a compromise scenario, in which the crack 
has exactly two options: to cross or to bypass the fibre. 
 
 
CONCLUSION 
 
We have considered the influence of different material parameters on the fracture 
energy for given load scenarios. It has been demonstrated that for the fibre breakage 
process the dissipated energy can be increased by adjusting the cohesive parameters of 
the fibre. It has also been shown that higher values of fracture energy for fibre 
debonding than for fibre breakage can be attained by adjusting geometrical parameters 
of the fibre. Additional to the studies for prescribed crack paths, simulation results have 
been shown for free crack propagation due to a stress criterion. The model reproduces 
complex cracking phenomena such as crack branching and bridging. The two 
approaches considering prescribed crack paths and free crack paths can be seen as limit 
cases. For future studies a middle way will be chosen, by permitting both the two 
prescribed crack paths of Figure 2. This will allow a systematic study of material 
parameters which lead either to fibre debonding or fibre breakage. Also the application 
of optimization tools for finding optimal material parameters and crack control is 
advisable. Possible directions for the controlling of crack growth can be found in [11].  
 
 
 
 

 
 

Figure 3.  for increased  
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Figure 4. a) Stress distribution for incipient crack b) Crack path 1 c) Crack path 2 
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