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ABSTRACT. Ceramic rolls for wire hot rolling at multi-line rolling mills may fail by 
contact overloading. The present paper deals with a refinement of first publications on 
this topic. In the first part the relations for stress intensity factor computation via the 
weight function method are compiled. Then it is shown whether the mixed-mode stress 
intensity factors of the curved cracks can be applied for the prediction of crack path via 
the condition of local symmetry.  
 
 
INTRODUCTION 
 
Due to the excellent mechanical high temperature properties and wear resistance of 
silicon nitride, this class of ceramics is foreseen for rolls for wire hot rolling at multi-
line rolling mills. In first applications, and under extreme conditions, delayed failure of 
rolls occurred by spontaneous crack extension with cracks in the order of 0.4–1.2 mm. 
The problem of path development and path stability has been investigated very 
extensively in the fracture mechanics literature. All these investigations using different 
fracture criteria have in common the feature that a crack can extend along the 
continuously turning tangent direction only if KII=0. This condition, called the criterion 
of local symmetry, in principle allows the prediction of the crack path. First analyses of 
the failure behaviour of silicon nitride rolls based on such criterion have already been 
given in literature by Lengauer et al. [1]. In our contribution their analysis will be 
refined by taking into consideration mode-II stress intensity factors. The shielding term 
acting also for mode-II loading will be discussed with respect to KII-R-curve behaviour. 
 
 
STRESS INTENSITY FACTOR COMPUTATION 
 
A crack extending in a milling roller is shown in Fig. 1a. In order to understand 
extension of this crack, computations of the related mode-I and mode-II stress intensity 
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factors are necessary. Figure 1b shows a first-order approximation of the real crack 
(solid line) by an auxiliary slant crack (dash-dotted line) with a kink situation near the 
tip. The auxiliary crack is chosen from two conditions: First requirement is that its tip 
coincides with the tip of the real crack. Second the slope as the second free parameter 
results from the condition of minimizing the sum of y2. 

Results of mode-I stress intensity factors for arbitrary crack shapes deviating from 
straight cracks are seldom reported. An analysis of a straight crack in an infinite body 
assuming a small perturbation ahead of the tip of the initial crack was early presented 
by Cotterell and Rice [2]. They computed the mixed-mode stress intensity factors and 
crack paths under restrictions of a first-order analysis, i.e. for small deviations from the 
prospective extension of initial crack plane. Their computation procedure originally 
derived for cracks in an infinite body was extended in [3] to semi-infinite bodies by 
means of the weight function method.  
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Fig. 1 a) Crack in a milling roller, b) curved crack (solid line) replaced by an averaged 
slant crack (dash-dotted line) with a kink of angle β at the tip. 

In order to minimize the deviations between the real curved crack and the straight-
line approximation by a slant crack, let us construct the auxiliary crack so that its tip 
coincides with the tip of the real crack but exhibiting an infinitesimally small kink under 
the angle β into the direction of the real crack (Fig. 1b). The angle between the auxiliary 
crack (length a) and the free surface is denoted as ϕ, the coordinate system with respect 
to the auxiliary crack is (x, y). For the example shown in Fig. 1 it holds ϕ=27°. In this 
coordinate system, the conditions for an application of a first-order stress intensity 
factor analysis read  

 

 1/, <<<< dxdyay  (1) 

 

 2
616

Carpinteri
Casella di testo



As an important result it was found in [2] and [3] that a simple first-order evaluation 
of mode-I stress intensity factors is even possible for arbitrarily shaped cracks with an 
acceptable error margin if dy/dx≤0.2 and y/a<0.1 are fulfilled.  

The mixed-mode stress intensity factors KI,II for non-linear cracks can be computed 
by the weight function method as 
 

   (2) dxhdxhK
a
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with the stresses normal on the crack, σn, and the shear stress parallel to the crack, τxy. 
The weight function terms h11, h12, h21, and h22 necessary in Eqs 2 and 3 are of course 
hardly available for a crack of arbitrary shape. In general these functions have to be 
determined for any shape and any crack length. Such an approach of course would make 
the weight function method highly inefficient. 

Following the suggestion in [3] the weight functions for the rather complicated crack 
can be approximately derived in a first-order analysis by superposition of known stress 
intensity factor and weight function solutions (for details see [3]). In the following 
considerations, the stress intensity factor for the real crack is composed by a K of the 
slant auxiliary crack (dash-dotted line in Fig 1b) and that of a kink under angle β 
resulting in 
 
   (4) )'( 2

kinkI,slantI,I yOKKK ++≅
 
 )'(kinkII,slantII,II yOKKK ++≅  (5) 
 
Stress intensity factors for the slant crack 
For the special case of a straight slant crack, the four weight functions were determined 
in [4].  

  (6) ∫ +=
a

xyslantnslant dxhhK
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  (7) ∫ +=
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The mode-I and mode-II weight functions can be described by 
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with the coefficients D which can be represented for ϕ < π/4 by 
 
     ,          (10) 42)11(

1 05.148.1568.0 ϕϕ ++=D 42)11(
2 508.0327.0284.0 ϕϕ ++=D

 
     ,      (11) 42)22(
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with ϕ in radian. The mixed weight functions for ϕ < π/6 are given in [4]. They read for 
small angles of ϕ≤30° 
 

  ( )ϕ
π

2/3
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Stress intensity factors for the kink crack 
Since the tangent to the real crack and the auxiliary straight crack include a finite angle 
β, a kink stress intensity factor has to be added, i.e. 
 
 12slantII,11slantI,kinkI, gKgKK +=  (14) 
 
 22slantII,21slantI,kinkII, gKgKK +=  (15) 
 
using the functions gij according to [2] 
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In a first-order analysis it trivially holds: g11=g22→1. 
 
 
MODE-II STRESS INTENSITY FACTOR AND CRACK PATH 
 
The solution of Eqs. 4-16 at different times t and crack lengths a results in the 
individual thin curves of Fig. 2a for mode-I and the curves in Fig. 2b for mode-II. The 
dashed curve in Fig. 2a represents the envelope of the individual Kappl-curves. A 
maximum stress intensity factor of KI,max = 6 MPa√m is reached at about t = 1.6 ms for a 
crack length of a = 150 µm. This value is about 1.5 MPa√m smaller than obtained by the 
assumption of a straight crack normal to the free surface [1].  
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Fig. 2 Applied stress intensity factors as a function of crack depth a at different times t, 
a) mode-I, b) mode-II stress intensity factor, dash-dotted line indicates the crack length 

at which the crack rather abruptly kinked (Fig. 1). 
 

Crack path: The problem of path development and path stability was investigated 
very extensively in fracture mechanics literature (for references see for instance the 
introduction chapter of Cotterell and Rice [2]). All these investigations using different 
fracture criteria have in common the feature, that a crack can extend with continuously 
turning tangent direction only if (in cases of traction free crack faces) the applied mode-
II stress intensity factor KII,appl disappears 
 
 0applII, =K  (17) 
 
This condition is called the criterion of local symmetry. If for a given crack the 
condition Eq. 17 is not fulfilled, the crack must spontaneously kink by an angle of Θ out 
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of the initial crack plane and will propagate then under KII=0. For small values of KII 

/KI, the crack kink angle Θ can be expressed by  
 

 
I0

applII,2
K

K
−=Θ   (18)  

 
A complication of this simple behaviour occurs for ceramic materials. In addition to 

the well known mode-I effect of bridging interactions between the crack surfaces, it has 
to be expected that crack-face interactions may also affect crack extension under pure or 
superimposed mode-II loading as for instance outlined for frictional bridging in [5,6]. It 
was outlined that the shear tractions generated under small mode-II load contributions 
may cause a shielding stress intensity factor KII,sh which reduces the applied stress 
intensity factor KII,appl. The total mode-II stress intensity factor, also called the crack-tip 
stress intensity factor KII,tip, reads 
 
  0, shII,shII,applII,tipII,totalII, <+== KKKKK  (19) 
 
In the case of crack shielding (i.e. in the presence of a mode-II R-curve), KII,tip must 
disappear during crack propagation  
 
 0tipII,totalII, == KK  (20) 
 
Equation 19 enables to compute the mode-II shielding stress intensity factor KII,sh. From 
Eqs 19 and 20 it simply results 
 
  applII,shII, KK −=  (21) 
 
The actual mode-II crack tip stress intensity factor KII,tip present at the crack tip results 
from  
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This stress intensity factor governs the local stability of crack paths. If the value 

KII,tip does not disappear, the crack must kink by an angle of Θ out of the initial crack 
plane and will propagate then under KII,tip=0. For small values of KII,tip/KI0, the crack 
kink angle Θ can be expressed similar to Eq. 18 by  
 

 
I0

tipII,2
K

K
−=Θ   (23) 
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The mode-II stress intensity factor curves in Fig. 2b show that KII is clearly not dis-
appearing as might be expected from Eq. 17. This is a clear indication for the 
occurrence of mode-II-shielding as had to be expected even from the occurrence of 
mode-I-shielding. 

At the moment of crack kinking (in Fig. 1 at about 960 µm), it must be fulfilled 
KII,appl = −KII,sh. From this condition we find a shielding (bridging) stress intensity factor 
between about KII,sh = KIIR = −6 MPa√m and −7 MPa√m, i.e. an effect in the same order 
of magnitude as observed for the mode-I R-curve. This of course is a material specific 
and not necessarily a general result.  

So far we exclusively discussed the stress intensity factors for the existing crack as 
specified in Fig. 1a. For a real prediction of a crack path one needs knowledge of the 
mode-II R-curve as a predisposed material property. For this material no information of 
mode-I and mode-II shielding terms were available. 
 
 
CONCLUSIONS 
 
The criterion of local symmetry demands that cracks follow a path where the crack tip 
mode II applied stress intensity factor, KII,appl, disappears. The analysed crack in the 
ceramic roll shows a kink what implies that for the kinked crack this condition is 
fulfilled. Since the contributions of the applied stress intensity factor KII,appl are 
considerable, this condition can only be fulfilled if considerable (negative) contributions 
of the crack shielding does occur. But we also have to conclude that exact crack-path 
predictions on disappearing KII,appl are not possible so far the “mode-II R-curve” of the 
material is not available as an independent material property (geometry, loading,…). 
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