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ABSTRACT. The influence on the crack growth rate on a microstrucurally short edge 
crack, subjected to  fatigue loading, due to changes in crack length, distance to grain 
boundaries and applied load, is investigated. The crack is assumed to grow in a single 
shear mechanism due to nucleation, glide and annihilation of dislocations along 
preferred slip planes in the material. The geometry is modelled by distributed 
dislocation dipole elements in a boundary element approach under quasi-static and 
plane strain conditions. The evolving plasticity is described by discrete dislocations 
situated along one single  slip plane in front of the crack, coinciding with the crack 
direction.  
 
 
INTRODUCTION   
 
It is well known that the behaviour of microstructurally short cracks subjected to fatigue 
loading is influenced by features of the surrounding microstructure in the material, such 
as grain boundaries, slip plane orientation and local plasticity near the crack tip. Such 
cracks grow in a single shear mechanism, cf. Suresh [1], as a result from nucleation, 
glide and annihilation of dislocations. The crack grows along specific slip planes within 
the grains of the material, and not perpendicular to the loading axis as typically is 
observed for long fatigue cracks on a global scale. Due to the low growth rates observed 
for short cracks it is important to account for individual dislocations created during the 
fatigue process, building the plastic zone. Similar models taking individual dislocations 
into account have been developed by Riemelmoser et. al. [2] to study the cyclic crack 
tip plasticity for a long mode I crack, and by Bjerkén and Melin [3] to study the 
influence of grain boundaries on a short mode I fatigue crack, among others. A similar 
approach was also used by Krupp et. al. [4], who instead of discrete dislocations, used 
dislocation dipole elements to describe the plasticity in order to study the growth of a 
short crack in duplex steel.   

In this study a discrete dislocation model, describing both the geometry and the 
plasticity by discrete dislocations, is used to study the fatigue growth of a 
microstructurally short edge crack. The aim of this paper is to evaluate how the crack 
growth rate changes in relation to crack length, distance to grain boundary and applied 
load. 
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PROBLEM UNDER CONSIDERATION 
 
The fatigue growth of a microstructurally short edge crack located within one grain in a 
bcc structure, subjected to fatigue loading, have been investigated under plane strain and 
quasi-static conditions. The crack grows in a single shear mechanism due to nucleation, 
glide and annihilation of discrete dislocations along specific slip planes in the material. 
In this study, it is assumed that only one slip plane is active in order to ensure that the 
crack will remain straight and not grow in a zigzag pattern on alternating slip planes as 
obtained in general cases, cf. Hansson and Melin [5, 6]. From [5,6] it was found that 
changes in growth direction strongly influenced the growth rate which would shadow 
the influence from other parameters such as grain size, external load, crack length and 
the presence of a grain boundary,  investigated in this study. 

The initial crack, of length a, inclined an angle θ to the normal of the free edge, is 
located within a semi-infinite body, cf. Figure 1, with the only active slip plane having 
the same direction as the initial crack. In front of the crack one or two grain boundaries 
is introduced, hindering the spread of the plasticity. The external fatigue load, yyσ ∞ , is 
applied at infinity, parallel to the free edge and is varied between a maximum value, 

yymaxσ ∞ , and a minimum value, yyminσ ∞ .  

 
 

Figure 1. Geometry of the short edge crack with⊥ denoting the position of one positive 
edge dislocation in the plastic zone. 

 
 
BOUNDARY ELEMENT APPROACH 

 
The modelling in this study rests solely on a dislocation formulation, were both the 
geometry of the short edge crack and the plasticity are described by dislocations in a 
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boundary element approach. Only plane problems are addressed, and, therefore, only 
edge dislocations are needed in the formulation.  
 
External boundary modelling 
The external boundary, here defined as the free edge together with the crack, cf. Figure 
1, is modelled by dislocation dipole elements. Each dipole element consists of two 
climb and two glide dislocations, situated at the end points of the dipole element, 
according to Figure 2. Using both climb and glide dislocations make it possible to 
determine the opening between as well as the shearing between the crack surfaces. The 
stresses in an element are calculated at the collocation point, CP, at the centre of each 
element, cf. Figure 2. For the elements along the crack, the magnitudes of the climb 
dislocations directly correspond to the crack opening, whereas the magnitudes of the 
glide dislocations correspond to the shearing between the crack surfaces. 
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Figure 2. Dislocation dipole element consisting of four edge dislocations, with (xn, yn) 
denoting the local coordinate system and CP the collocation point at which the stresses 

are calculated. 
 
 
The stresses at an arbitrary point in the body are calculated by adding the stress 
contributions from all dislocations in the dipole elements at this specific point, 
calculated according to Eq. 1, cf. Hills et al. [7], and the externally applied load.  Eq. 1 
describes the stress field from one edge dislocation situated at the origin of the local 
coordinate system (x, y), where bk is the Burgers vector, µ the shear modulus, κ the 
Kolosov constant, and ( , )k

ijG x y  the influence functions given in [7]. 
 

,
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The sizes of the dislocations in the dipole elements are calculated from an equilibrium 
equation, describing the normal and shear stresses along the external boundary. 
Knowing that the normal and shear stress along the external boundary must equal zero, 
if the crack is assumed to be fully open, the magnitudes of the dislocations in the dipole 
elements can be determined. 
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Plasticity 
The developing plastic zone is, in this approach, described by discrete dislocations, each 
of magnitude b, the Burgers vector of the material, spread out along the slip plane in 
front of the crack. The dislocations contribute to the stress field and must therefore be 
included in the equilibrium equation, needed to calculate the magnitudes of the dipole 
dislocations. The equilibrium equation, taking this into account, is given by Eq. 2: 
 

Gbboundary + bGinternal + σ∞ = 0                     (2) 
 

Where G is a matrix holding the influence functions for the dislocations in the dipole 
elements, bboundary is a vector containing the magnitudes of the dipole dislocations, 
Ginternal is a vector holding the influence functions for the dislocations constituting the 
plastic zone and σ∞ is a vector containing the shear and normal stress contributions, due 
to the external load. 

In the simulations it is assumed that no exist within the material prior to the first 
loading cycle. As the external load is raised the stresses in front of the crack tip 
increases, and it is assumed that when the resolved shear stress, τslip, calculated 
according to Eq. 3, reaches the nucleation stress, τnuc, a new dislocation pair is nucleated 
at the crack tip. In Eq. 3 θ is the angle between the global x-axis and the slip plane. In 
this study the crack tip is assumed to be the only source for dislocation nucleation. 

 

             
-

( ) sin 2 cos 2
2

yy xx
slip xy

σ σ
τ θ θ σ θ= +            (4) 

The dislocation pair consists of two dislocations of equal size but opposite sign, 
separated a small distance. The dislocation having a Burgers vector pointing inwards in 
the material is called positive dislocation and the one pointing towards the free edge is 
called a negative dislocation. The nucleation stress is defined as the lowest stress at the 
nucleation point needed to ensure that the positive dislocation in the newly nucleated 
pair travels inwards in the material directly after nucleation. This value is found to be 
geometry dependent and most therefore be calculated for each new crack geometry. 
  
Crack growth 
As the applied load gets sufficiently high dislocation pairs will nucleate at the crack tip, 
creating a plastic zone in front of the crack. The positive dislocation will glide inwards 
into the material directly after nucleation along the slip plane as long as the resolved 
shear stress at its momentary position exceeds the lattice resistance of the material, τcrit, 
whereas the negative dislocation will remain at the crack tip. The dislocations creating 
the plastic zone shield the crack tip and, therefore, the load must be further increased 
before more dislocation pairs can nucleate. This process of nucleation and glide of 
dislocations continues until the maximum load is reached and the load starts to 
decrease. Load reversal will, eventually, result in that the dislocations start to glide in 
the opposite direction, back towards the crack. When a positive dislocation gets close to 
its negative counterpart at the crack tip the two annihilate, resulting in crack growth in 
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the corresponding direction by one b, under the assumption that no healing of the crack 
surfaces is allowed. This growth process due to annihilation of dislocations continues 
until minimum load is reached and a new load cycle starts. More details about the 
developed model used in this study are found in [5, 6]. 
 
 
RESULTS AND DISCUSSION 
 
Initial conditions 
The material used in this study is pure iron, with a bcc crystal structure and which is 
assumed to be linear elastic. The material parameters are shown in Table 1, cf. Askeland 
[8], together with the geometrical data for the initial short edge crack seen in Figure 1 
and the calculated value of the nucleation stress. 
 

Table 1. Material properties and geometrical parameters. 
  

Shear modulus, µ         80GPa 
Poisson’s ratio, ν  0.3 
Burgers vector, b         0.25nm 
Lattice resistance, τcrit  40MPa 
Nucleation stress, τnuc  1.59GPa 
 

Initial crack length, a                  10000-80000b  
Crack angle, θ                  45° 
Distance to grain boundary, lGB  2000-15000b 
Applied load, max min,yy yyσ σ∞ ∞       220MPa, 20-80MPa 

 
 
Crack growth rate as function of distance to the grain boundary 
The distance of the grain boundary from the crack tip, lGB, influences the crack growth 
rate da/dN since it controls the plasticity spread and the static plastic zone size. It is also 
a measure of the grain size, keeping the crack length constant. As an example, with 
a=20000b, and yy minσ ∞ =40MPa yy maxσ ∞

 =200MPa, the number of dislocations along the 
slip plane at maximum and minimum load as functions of lGB is shown in Figure 3.1. It 
is found that both the maximum and minimum number of dislocations is increased as 
lGB is increased. It is also seen that the difference between maximum and minimum 
number of dislocations, corresponding to the number of annihilated dislocations, i.e. the 
crack growth rate per cycle, increases somewhat with increasing lGB. When studying a 
number of different yy minσ ∞ , holding yy maxσ ∞

  constant it was, however, found that this is 
not always the case, as seen in Figure 3.2, where  the growth rate for four different 

yy minσ ∞  as function of lGB is seen. As can be seen, for low values of yy minσ ∞  the growth rate 

increases with crack length. For higher values of yy minσ ∞  it was, however, found that the 
growth rate first increases with lGB and then decreased for larger values of lGB. This is 
because, for large values of lGB, a large number of dislocations can remain along the slip 
plane also at low applied loads. This results in that the applied load when the first 
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annihilation occur, decreases as lGB increases, resulting in that the lowest yy minσ ∞  needed 
to obtain crack growth is decreased when lGB is increased. 
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Figure 3. Number of dislocations along the slip plane at yy minσ ∞ =40 MPa and 

yy maxσ ∞
 =200MPa as functions of lGB. 2. Crack growth rate for different yy minσ ∞  as a 

functions of lGB. 
 
 
Crack growth rate as function of ∆K 
To compare the results from the simulations to typical behaviour for long cracks the 
crack growth rate is calculated as a function of the stress intensity factor range, ∆K, [1]. 
∆K is calculated according to Eq. 5, where no consideration to the mixed mode loading, 
or influence of the free edge is taken into consideration. Thus ∆K is merely treated as a 
way of measuring how crack length and external load influences the stresses in front of 
the crack. 
 

( )yymax yyminK aσ σ π∞ ∞∆ = −             (5) 
 

First da/dN as function of ∆K, with ∆K increasing due to increasing a, was calculated 
with lGB1=5000b and yy maxσ ∞

 =200 MPa for different yy minσ ∞  with four different crack 
lengths; a=10000b, 20000b, 40000b and 80000b, cf. Figure 4.1. It is found that, for all 
but the lowest growth rates, the curves for the different load amplitudes show very good 
agreement. The discrepancies for the lowest loads are due to that at already yy minσ ∞ =40 

MPa, the crack growth rate equals zero. Therefore, the first point, with yy minσ ∞ =60 MPa 

and yy minσ ∞ =80 MPa, is not the limit for crack growth. 
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In Figure 4.2, showing da/dN as function of ∆K, ∆K is instead increasing due to 
increasing yy maxσ ∞

 , in the interval yy maxσ ∞
 =140-360 MPa, with a=20000b and lGB1=5000b. 

The curves in Figure 4.2 show good agreement, especially for the highest growth rates. 
The differences in the threshold values of ∆K, below which no crack growth will occur, 
is also clearly seen in the figure and it was found that the highest growth rates, given a 
constant ∆K, is obtained with yy minσ ∞ =80 MPa and the lowest with yy minσ ∞ =20 MPa. This 

is because it requires a smaller increase in yy maxσ ∞
  to nucleate further dislocations than 

the required increase in yy minσ ∞  to annihilate one less dislocation, which leads to an 

increase in threshold value with decreasing yy minσ ∞ . 
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Figure 4.Crack growth rate, da/dN, as function of stress intensity factor, ∆K. 1. Constant 

yy maxσ ∞
 increasing a. 2. Constant a increasing yy maxσ ∞

 .  
 
 
Also a comparison between the two different ways of increasing ∆K, by either 
increasing a or increasing yy maxσ ∞

 , has been performed, using yy minσ ∞ =40 MPa and 
lGB1=5000b. The result is seen in Figure 5 and it is seen that, for low growth rates, the 
two ways of increasing ∆K give similar results. For higher growth rates, however, it is 
found that the curves shows different slopes and, by increasing a, results in lower 
growth rates as compared to increasing yy maxσ ∞

 . When using the method of increasing 

yy maxσ ∞
 , an almost linear relation between ∆K and da/dN was observed as compared to 

what is obtained for long cracks were ∆K, typically, is of the power of two and four [1] 
in relation to da/dN. 
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Figure 5. Comparison of crack growth rate, da/dN, as function of ∆K. Increase in ∆K is 

either due to increasing crack length (dashed line) or  increase in yy maxσ ∞
 (solid line). 

 
  
CONCLUSIONS 
The crack growth rate might both increase and decrease for increasing distance between 
the crack tip and a grain boundary, depending on the chosen load range. It was also 
found that the crack growth rate increases, approximately, linearly with stress intensity 
factor range, contrary to long cracks which follows Paris’ law with an exponent of two 
to four. Also good agreement was found when comparing the growth rates for different 
load ranges, changing either the crack length or the maximum load. However, some 
small differences were found when comparing the increase in crack growth rate due to 
an increase in crack length or due to increasing in maximum load. 
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