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ABSTRACT. A variational model for irreversible quasi-static crack evolution in quasi-
brittle materials is proposed in which, at each time step, the equilibrium crack paths are 
associated with stationary points of a particular energy function, composed of bulk and 
surface energy terms. The approach is similar to that proposed in [4-5] but, here, a 
substantial modification of the energy function of [4-5] allows for the formation of 
shear bands that may coalesce in mode II cracks, whereas the model of [4-5] can only 
account for cleavage fractures. The procedure has been numerically implemented and 
applied to reproduce the characteristic fracture pattern observed in the ashlar masonry 
of the French Panthéon in Paris. The crack pattern theoretically predicted with the 
model here proposed, being very similar to that observed in the French monument, 
gives an insight into the possible causes of damage. 
 
 
INTRODUCTION 
 
Built in the middle of the French revolution, the French Panthéon was a revolutionary 
structure for that time also from a technical point of view, somehow testifying the 
transition from an epoch when constructions were made on the basis of empirical laws 
and personal experience, to the period when the elasticity theory started to guide the 
structural design. Perhaps for the first time, some sort of material tests were performed 
to achieve a slender structure and a new construction method, precursor of the modern 
reinforced concrete, was attempted. In fact, the ashlars of the French Panthèon are 
reinforced by a widespread system of iron bars, ingeniously placed to equilibrate 
possible tensile stress. Unfortunately, the innovation was accompanied by structural 
inconveniences that became apparent already since the time of construction. Despite the 
numerous consolidation works, the fact that damage is still active nowadays is testified 
by the recent detachments of stone fragments from the arches and vaults in the naves 
and isles, events that forced the closure of the monument in 1985. There is still no 
universally accepted explanation about the causes of damage, although this is 
characterized by a very peculiar crack pattern in the ashlar work. The aim of this paper 



is to try to clarify the causes of damage and, to do so, a model is proposed for crack 
propagation in quasi brittle materials. Results corresponding to various damaging 
effects are compared with the crack paths observed in situ, looking for possible 
similarities that might give insight into the reasons of degradation. Main faults have 
been observed essentially a) in the ashlars forming the vaults and domes, which had 
been reinforced with iron staples (agrafes), and b) in the four crossing piers supporting 
the main dome. The typical crack path in the stone ashlars is represented in Figure 1a. 
Here, two symmetric stone fragments have detached, showing the underlying iron staple 
connecting the adjacent blocks. Two different explanations have been advanced for this 
type of damage. According to one of them, it is the staple expansion due to iron 
oxidation that provokes cracking; the second hypothesis calls for the pull out of the 
iron-staples, subjected to tensile forces to equilibrate the hoop stress in the domes.  
 

 (a) 

 

(b) 

Figure 1. (a) Typical crack path of detaching stone fragments near an iron clamp; (b) splitting and 
spalling observed in the stone piers of the main dome (Plate XV of [1]) 

 
The piers of the main dome presented another pathology, showed in Figure 1b taken 

from the famous memoir [1] by J. Rondelet, perhaps the main personality involved in 
the Panthéon construction. According to Rondelet, triangular chips were spalled from 
the faces of the stone. Such damage was attributed to the stress concentration due to 
slips of hard oak wood, inserted as spacers in the mortar joints. The crack pattern is 
hidden nowadays by Rondelet’s consolidation work of 1812, in which surrounding 
walls were added to the original slender piers. In any case, it is still important to analyze 
such damage process because, on the one hand, the role of the wood spacers has not yet 
been corroborated by a quantitative structural calculation; on the other hand, since the 
technique of wood spacers was widely used in the building, there might be other spots 
where such damage is potentially still active, though not yet visible with the naked eye.  
 
 
THE MODEL 
 
Perhaps one of the main difficulties in following a crack path is that, in general, the 
discontinuity surface is not known a priori but must be determined from the 
calculations. A smart approach to problems with free discontinuity sets was first 
proposed by E. De Giorgi et al. [2] for the Munford Shah functional [3], used in 
problems of image segmentation and reconstruction. The idea consists in approximating 



a functional that allows for free discontinuity sets, with a sequence of functionals 
defined on a class of regular functions, by showing that minimizers of the 
approximating functionals converge, in some sense, to a minimizer of the parent 
functional. The type of convergence required to prove the relevant theorems is referred 
to as Γ-convergence and an application of this procedure to problems in fracture 
mechanics has been recently proposed by Francfort and Marigo [4], and numerically 
implemented together with Bourdin [5]. The authors, in order to reproduced crack 
propagation à la Griffith, proposed to approximate the displacement field u(x): Ω→R3 

of a cracked body Ω as minimizers of functionals of the type 
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Here, the unknown field s(x): Ω→[0,1] ⊂ R plays the role of a classical damage 

parameter since it takes the unit value when the material is sound and the null value 
when the material is fractured; ε represents a small parameter; C is the isotropic-

elasticity fourth-order tensor; E(u) is the infinitesimal strain associated with the 
displacement u; kε and γ are material parameters. It is clear that the first integral in (1) 
represents the elastic bulk strain energy: the more damaged the material is (s → 0), the 
looser the material becomes, while kε indicates a certain residual elasticity that the 
materials maintains even when completely damaged (s = 0). The second integral in (1) 
represents the energy consumption necessary to damage the material. In fact, observe 
that whereas the first integral in (1) is minimized, for fixed u, by s = 0, the second one is 
minimized by s = 1. Thus, there is a competition between the two terms, but the 
transition between a region where s = 0 and one where s = 1 is necessarily associated 
with a non null value of its gradient ∇s, which is penalized in the second integral. The 
parameter ε has the dimension of a length and, indeed, it represents the material intrinsic 
length scale; in fact, the regions of the body where s ≅ 0 (process zone) are thin strips 
whose width is of the order of ε. Recall that, for natural or artificial conglomerates like 
sandstone or concrete, the intrinsic length scale is of the order of the maximum diameter 
of the aggregates [6]. Remarkably, it is shown in [4] that, if ε→0 and kε = o(ε), then the 
process zone reduces to a sharp crack identified by a surface ω cutting the domain Ω, 
while minimizers of (1) Γ-converge to minimizers of the functional 
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where meas(ω) denotes the measure of ω. Clearly, the first term in (2) represents the 
elastic strain energy and the second one the surface energy for the crack opening. Thus, 
in agreement with Griffith’s model, γ represents the fracture energy per-unit-thickness. 



In order to take into account that damage is an irreversible process, the minimization 
of (1) is performed incrementally [5]. In particular, the functional (1) is minimized 
under Dirichlet conditions on the boundary ∂Ω of the body Ω of the type t=u u  on ∂Ω, 
where t∈[0,1] is a parameter representative of the time. The reference time interval is 
divided into a certain number of steps and, at each step, the functional (1) is minimized 
with the constraint that the damage parameter s can only increase and never decrease. It 
is shown in [4] that, as the time step tends to zero, the sequence of minimizers tends to a 
definitive limit, representative of irreversible quasi-static crack evolution. 

However, the model just described presents two major inconveniences. First, 
material can equivalently damage in tension or compression, regardless of contacts and 
material interpenetration at the crack surfaces; secondly, no distinction is made between 
cleavage and shear fracture. Both aspects must be considered in order to reproduce the 
developing of crack paths in quasi brittle materials, as will become clear later on. The 
model here proposed consists in substituting the functional in (1) with the functional 
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are the deviatoric and spherical part of the strain tensor, respectively. The substantial 
difference between (1) and (3) is that in (3)  only does the deviatoric part of the strain 
energy multiply the damage parameter s, i.e., the hydrostatic part of the elasticity is 
unaffected by damage. Thus, as s→0 (completely damaged material) the allowed 
kinematics is a material distortion which leaves the volume unaffected. Therefore, the 
model is tailored to reproduce the formation of shear bands of mode II micro-fractures 
in a linear elastic body, governed by von Mises-Hencky-Hüber criterion of local failure.  
 
 
NUMERICAL EXPERIMENTS 
 
In the following we consider a typical stone panel of length L = 900mm and height 
H = 500mm. The material is a partially consolidated calcareous rock with granular 
texture. Reasonable parameters for such a material are Young’s modulus 
E = 104N/mm2, Poisson’s ratio ν = 0.1, fracture energy γ = 25N/mm, and we set 
kε = 10-2. Since the characteristic size of the rock aggregates is around 0.5 ÷ 1.0 mm, we 
choose ε = 2mm as the characteristic length scale. Numerical experiments are 



performed in a few paradigmatic cases. In the following, just the main results are briefly 
summarized, referring to [7] for a more comprehensive analysis.  
 

   
(a) (b) (c) 

Figure 2. Expanding iron staple due to oxidation. (a) Geometry and boundary conditions; (b) - (c) crack 
paths obtained with functional (1) of [5] for various values of the staple-arm expansion t.  

 
 

   
(a)  (b) (c) 

Figure 3. Expanding staple due to oxidation. (a)-(b)-(c) Damage evolution obtained with functional (3) 
for various values of the clamp expansion t. Dark zones correspond to s ≅ 0 (fractured material). 

 
Effect of oxidation in the iron staples 
Oxidation makes iron expand and if such an expansion is constrained, as in that part of 
the iron staple merged in the stone panel, considerable stress may be induced. Here, 
using symmetry considerations, the effect of expanding staples due to iron expansion is 
represented by the boundary value problem of Figure 2a, where GDEF is the staple arm 
and the parameter t denotes the clamp expansion. The calculated damaged pattern 
obtained through functional (1) of [5] is represented, for two values of t, in Figures 
2b-c, where dark zones correspond to s ≅ 0 (fractured material). Observing the pictures 
it is clear that, since the model of [5] allows for material crushing and interpenetration, 
the process zone remains confined in a neighbourhood the staple-arm contour.  

Figures 3a-b-c correspond to the same problem of Figure 2a, but now the crack path 
has been calculated using the functional (3). Comparing the path of figures 2b-c with 
this path, observe that now the permanent iron expansion produces the separation of 



triangular shaped stone fragments, evidencing the role played by shear deformations in 
(3). However, none of the crack paths reported in Figures 2 or 3 matches the crack path 
observed in situ (Figure 1a). 
 
Effect of staple pull out 
In order to simulate the effects of the iron-staple pull out induced by equilibrium with 
the hoop stress in the domes, consider the problem of Figure 4a where the side AH is 
displaced leftwards by the quantity t. Observing Figures 4b-c, which represent the crack 
path calculated with the energy (1) of [5], observe that, again, damage accumulates 
around the staple-arm border. In particular, material fractures on GF and crushes on DE, 
but the crack path is still different from that of Figure 1a. 
 

   

(a) (b) (c) 

Figure 4. Case of staple pull out. (a) Geometry and boundary conditions; (b) - (c) crack path obtained 
with functional (1) of [5] for various values of the displacement t.  

 

  
 (a) 

 
 (b) (c) 

Figure 5. Case of staple pull out. Damage evolution obtained with functional (3) for various values of the 
displacement t. Dark zones correspond to fractured material (s ≅ 0). 

 
The crack path obtained by using the energy functional (3) is represented in Figures 

5a-b-c and 6a. It is evident that material begins to fracture on the left-hand side and the 
crack progresses rightwards. Eventually, a fragment with the characteristic shape of 
Figure 6a detaches from the panel. There is a substantial agreement between the crack 
path predicted by the model and the crack path observed in situ. This is recalled in 
Figure 6b, which represents a place different from that of Figure 1a, where the stone 



fragment isolated by the crack is still attached at the wall. Indeed, the crack path of 
Figures 1a or 6b can be observed at numerous places in the French monument, and it is 
so repetitious and peculiar to be considered a characteristic indication of damage.  
 

  
Figure 6. Comparison of the crack paths (a) predicted by the model of (3) and (b) that observed in situ. 

 
Stress concentration due to the wood wedges. 
The boundary value problem of Figure 7a reproduces the contact forces transmitted to 
the stone panel by the oak-wood slips, inserted between consecutive panels to regularize 
the thickness of the mortar joints. Figure 7b-c represents the damage evolution for two 
values of the vertical displacement t of the wood slips, calculated using the energy 
function (3). It is evident that the damage remains localized into two triangular portions 
right below the slip contact surface, which well match with the damage pattern recorded 
in [1] by Rondelet (Figure 1b). Results obtained with the functional (1) of [5] have not 
been reported for the sake of brevity, but if it should be mentioned that the extension of 
the damaged region is limited to a small rectangular strip just below the contact surface, 
since the model of [5] allows for material crushing and interpenetration. 
 

 
  

(a) (b) (c) 

Figure 7 Contact of wood slips. (a) Geometry and boundary conditions; (b) - (c) damage evolution for 
various values of the vertical displacement t, obtained through functional (3). 

 
For this particular case a quantitative description may be of interest. The model of (3) 

predicts that cracks start to propagate for t ≅ 0.07mm and that the maximum force per-
unit-panel-thickness that each wood slip can transmit (peak load) is of the order of 
350N/mm. Slightly smaller values are obtained with the energy function (1) of [5] since, 

(a) (b) 



in this case, damage affects the entire elastic energy, and not only its deviatoric part. An 
accurate estimate [7] of the axial force carried by the piers of the main dome indicates 
that the resistance suggested by the model is one order of magnitude lower than that 
required to withstand the permanent loads. Consequently, it is not surprising that the 
characteristic damage of Figure 1b had been observed already during the building 
construction, much earlier than the dome had been completely vaulted. 
 
 
CONCLUSIONS 
 
Albeit tentatively, the model proposed in (3) has been able to reproduce accurately the 
crack paths observed in the ashlar masonry of the French Panthéon, which represent a 
very peculiar pathology of damage. Moreover, comparison with the results obtainable 
with the model (1) of [5], has highlighted the fundamental role played by shear bands 
and mode II microfractures in the degradation phenomenon. In any case, the numerical 
experiments with the energy function (3) seem to indicate that it is the pull out of the 
iron staple, induced to equilibrate the hoop stress in the domes, that is associated with a 
crack path surprisingly similar to that observed in situ (Figures 6). However, the 
quantitative analysis does not rule out the role of iron expansion due to oxidation, which 
is theoretically sufficient to provoke the stone rupture, even if the corresponding crack 
path (Figures 3a-b-c) is not so evident in the monument. Finally, a quantitative 
description of the effects of the stress concentration induced by the wood spacers in the 
mortar joints strongly corroborates the accidents in the four crossing piers of the main 
dome, historically reported in the documents. 
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