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ABSTRACT. When subjected to fatigue loading microstructurally short cracks grow in 
a zigzag shape in a single shear mechanism due to nucleation, gliding and annihilation 
of dislocations. Such crack shapes are computationally time consuming due to the scale 
of refinement needed in a numerical model. Therefore an investigation of to what extent 
a zigzag geometry could be simplified, keeping acceptable accuracy as regards 
geometry dependent parameters, was performed. It was found that using a model 
correctly describing the zigzag section closest to the crack tip only, ignoring all zigzag 
sections between this last one and the initial crack tip, very good agreement was 
obtained, both when calculating the nucleation stress for dislocations and the resolved 
shear stress in front of the crack.     
 
 
INTRODUCTION   
 
It is well known that fatigue growth of microstructurally short cracks is influenced by 
the surrounding microstructure of the material, such as grain boundaries, slip plane 
orientation and local plasticity in the crack tip region. Such short cracks grow in a single 
shear mechanism, cf. Suresh [1], due to nucleation and gliding of dislocations, creating 
a zigzag shaped crack. For short cracks and low growth rates it is important to account 
for individual dislocations created during the fatigue process. Models taking this into 
account have been developed by Riemelmoser et. al. [2] to study the cyclic crack tip 
plasticity for a long mode I crack, and by Bjerkén and Melin [3] to study the influence 
of grain boundaries on a short mode I fatigue crack. A similar approach was used by 
Krupp et. al. [4], describing the plasticity with dislocation dipole elements, to study the 
growth of a short crack in a duplex steel.   

In this study, two models simplifying the complex geometry emerging during fatigue 
growth of short cracks have been developed and compared to the correct crack shape as 
regards dislocation nucleation stress and shear stress in front of the crack along different 
slip planes. 
 
 



PROBLEM FORMULATION 
 
The investigation involves a microstructurally short edge crack situated within one grain 
in a semi-infinite body. The initially straight crack is inclined at an angle α to the 
normal of the free edge and the external load yyσ ∞  is applied parallel to this free edge, cf. 
Fig. 1.1. Within the grain slip planes along which dislocations can nucleate and thus 
creating a plastic zone are separated by an angle β. A grain boundary, parallel with the 
free edge, is introduced a certain distance in front of the initial crack tip, acting as a 
dislocation barrier, preventing the plasticity to spread into the next grain. 
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Figure 1. 1. Initial geometry of the short edge crack. 2. Resulting crack shape consisting 
of five crack segments with three marked slip planes; all lengths expressed in terms of 

Burgers vector, b. 
 

When the initial, straight crack is subjected to fatigue loading, the crack grows, 
forming a zigzag shaped crack, cf Fig. 1.2. Such a zigzag shaped crack is time 
consuming and difficult to model due to the large number of elements needed to capture 
all stress concentrations at the corner points and at the crack tip. Therefore, attempts to 
simplify the crack geometry and thereby reduce the number of elements needed to 
capture the crack development was made. Two different models were created and 
compared with the correct crack shape, schematically shown in Fig. 2.1, obtained by the 
distributed dipole element approach described below. In the first simplified model, the 
crack consisted of four crack segments, with the two segments closest to the crack tip 
identical to the correct crack shape, cf. Fig. 2.2. In the second, the crack was assumed to 
consist of three crack segments only, with the segment closest to the crack tip identical 
to the correct crack shape, cf. Fig. 2.3. 
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Figure 2. Crack shapes of the three models; the correct crack shape is seen as a dashed 
line. 1. The correct crack shape. 2. Crack shape consisting of four crack segments. 3. 

Crack shape consisting of three crack segments. 
 
 
DISTRIBUTED DIPOLE ELEMENT APPROACH 
 
In this study both the external boundary, defined as the free edge together with the 
crack, and the plasticity along the slip planes are described with dislocation dipole 
elements in the spirit of a boundary element approach, cf. Hansson and Melin [5]. Only 
plane problems are addressed and, therefore, only edge dislocations are needed in the 
formulation. The dislocation dipole elements along the external boundary consists of 
four dislocations, cf. Fig. 3.1, two glide dislocations, grey in Fig. 3.1, and two climb 
dislocations, black in Fig. 3.1. Using both types of dislocations makes it possible to 
determine both the shape of the free edge and the opening and the shearing between the 
crack surfaces. The elements describing the plasticity along the slip planes only consists 
of two glide dislocations, cf. Fig. 3.2, because only shearing of the surfaces is allowed 
along the slip planes. The two dislocations of same type constituting an element have 
the same size but opposite direction of their Burgers vectors. 

 
Figure 3. Dislocation dipole elements: 1. along the external boundary and 2. along the 

slip planes. 
 
Stress calculation 
The stresses at an arbitrary point within the body are calculated as the sum of the stress 
contributions from all dislocations in the dipole elements and the applied load. The sizes 
of the dislocations forming the dipole elements are calculated from an equilibrium 
equation, describing the normal and shear stresses along the external boundary and the 
shear stresses along the slip planes. Knowing that the normal and shear stress along the 
external boundary must equal zero and that the shear stress along a slip planes cannot 
exceed the lattice resistance of the material, the magnitudes of the dislocations of all 
dipole elements can be determined. A more detailed description of the procedure of 
solving of the equilibrium equation and the stress calculation is found in [5]. 
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Nucleation condition 
It is assumed that the only sources of dislocation nucleation are the crack tip and 
eventual corner points of the crack. The dislocations nucleate in pairs, consisting of two 
dislocations of the same size but of opposite sign, separated a small distance rnuc. Such a 
pair nucleates when the resolved shear stress, τslip, exceeds a critical value τnuc, according 
to Eq. (1), at the distance rnuc in front of the crack. Thus, the condition for nucleation is: 
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where θ is the angle between the global x-axis and the slip plane in focus, and σxx, σyy 
and σxy are the stresses at the nucleation point. The nucleation stress is found by a 
balance consideration between the two dislocations, and varies with crack geometry. 
The nucleation condition used here is described in more detail in [6], by Hansson and 
Melin. 
 
Plastic zone 
The plastic zone is modelled by dislocation dipole elements placed along specific slip 
planes in the material. In the crack tip vicinity the resolved shear stress exceeds the 
lattice resistance of the material, resulting in a dislocation free zone. In this dislocation 
free zone no dipole elements are placed, cf Fig. 4, and at the end points of this zone two 
glide dislocations of opposite signs, each of size nb, are placed, were n is the number of 
dislocations nucleated along this specific slip plane. 

At the beginning of the first load cycle it is assumed that no dislocations exist within 
the material. When the resolved shear stress along a slip plane in front of the crack gets 
sufficiently high a dislocation pair is nucleated along this slip plane, resulting in n=1 
and increasing the size of the dipole elements in the plastic zone. The stress in front of 
the crack is recalculated, now including the newly nucleated dislocations. If the 
nucleation stress still is exceeded, another dislocation is nucleated and n is updated to 
n=2. This nucleation process along all possible slip planes continues until the stresses in 
front of the crack falls below the nucleation stress and unloading starts. During 
unloading some of the dislocations are forced to annihilate, causing crack growth. 
Thereafter a new load cycle begins and the new nucleation stresses are calculated, 
followed by eventual dislocation nucleation and annihilation. A more detailed 
description of the nucleation and annihilation process during the loading cycle is found 
in [5]. 

 

 
Figure 4. Description of modelling the plastic zone along a slip plane. 
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RESULTS AND DISCUSSION 
 
Initial conditions 
The material modelled in this study is pure iron, which has a bcc crystal structure. The 
material parameters are listed in Table 1, cf. Askeland [7], together with the initial 
geometrical parameters seen in Fig. 1.1. The choice of angle between the slip planes 
depends on the crystal structure and orientation of the bcc material and is discussed in 
detail in [6].  
 

Table 1. Material properties and initial geometrical parameters. 
  

Shear modulus, µ             80GPa 
Poisson’s ratio, ν       0.3 
Burgers vector, b       0.25 nm 
Lattice resistance, τcrit       40MPa 
 

Initial crack length, a0       10000b  
Crack angle, α                    35.3° 
Angle between slip planes, β       70.6° 
Distance to grain boundary, lGB   10000b 
Applied load, max min,yy yyσ σ∞ ∞        220, 20 MPa 

 
With the chosen initial conditions of Table 1 a crack will develop according to Fig. 

1.2, with lengths expressed in terms of Burgers vectors. It was found that the crack grew 
approximately the same distance along the upper slip planes, about 24b, and similarly 
approximately 28b along the lower ones. The creation of one zigzag section, consisting 
of one crack segment along the lower slip plane of 28b length, and one crack segment 
along the upper slip plane of 24b of length, results after seven load cycles. In this 
investigation, it is assumed that the growth pattern is built from such zigzag sections 
that emerge when a longer crack is created during further load cycles. 
 
Comparison of the nucleation stresses 
The first investigation is aimed at evaluating the differences between the three models 
regarding the nucleation stress at all possible nucleation sites. This calculation was 
performed for different crack lengths, i.e. numbers of crack segments, with two different 
lengths of the last crack segment closest to the crack tip, l =6b and l =16b, cf. Fig. 2.1. 
The nucleation stress τnuc as function of number of crack segments for the three models 
are shown in Fig. 5 at the three possible nucleation points, a distance rnuc from the crack 
tip and corner point closest to the crack tip along slip planes 1, 2 and 3, cf. Fig. 1.2. The 
choice of rnuc is discussed in [6]. 

In Fig. 5.1 the nucleation stress along plane 1 in Fig. 1.2 is seen for the three models 
as functions of number of crack segments constituting the correct crack shape. It is 
found that the model with three crack segments shows much less agreement with the 
correct model than the model with four crack segments. It is also seen that the 
differences between the models increases with increasing number of crack segments and 
that the difference is larger when l =6b than when l =16b. In Figs. 5.2 and 5.3 the 
nucleation stresses along plane 2 in Fig. 1.2 is seen, with Fig. 5.3 being an enlargement 
of the curves with l=16b. In this case, the differences between the models are much 
smaller than in along plane 1. However, the model with four crack segments is also in 



this case somewhat more correct than the model with three crack segments. The 
nucleation stress along plane 3 from Fig. 1.2 is seen in Fig. 5.4. Only the results for the 
shorter last segment of the crack is presented because when this last segment is longer, 
as in the case l =16b, no nucleation occurs along slip plane 3. Also in this case the 
model with four crack segments is in better agreement with the correct model than the 
model with three segments, but a larger difference between the correct values and the 
ones obtained by the model with four crack segments was observed along this slip plane 
than along planes 1 and 2.  
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Figure 5. Nucleation stress, τnuc, as function of number of crack segments of the correct 
crack shape for the three different models for two different lengths, l, of the last crack 

segment. 
 

In all investigated cases, the model with four crack segments is more correct than the 
model with only three segments. Both simplified models showed better agreement with 
the correct model with a longer last segment of the crack due to the increased distance 
from the simplified area. The simplified models showed an increasing error with 
increasing number of crack segments, especially the model with three crack segments. 
This outcome is expected since the simplifications reduce the number of stress 



concentrations in terms of corner points, and the effect of this strikes plane 3, being 
closest to the simplified area, the worst. It is also expected that a longer last segment l 
reduce the effects of the simplifications since the stress concentration at the crack tip 
gets further away from the simplified area. 
 
Comparison of the resolved shear stresses 
In the second part of the comparison between the three models, an analysis of the 
resolved shear stress at the nucleation points in front of the crack at maximum load was 
performed. The stresses were calculated along the same three planes at the possible 
nucleation positions, corresponding to the first investigation, and the results are seen in 
Fig. 6. 
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Figure 6. Nucleation stress, τslip, as function of number of crack segments for the three 

different models for two different lengths, l, of the last crack segment. 
 

In Fig. 6.1 the resolved shear stress, τslip, is calculated along plane 1 in Fig. 1.2 as 
function of the number of crack segments describing the crack. It is seen that the model 
with four crack segments shows excellent agreement with the values from the correct 



model for both lengths of the crack segment closest to the crack tip. The model with 
three crack segments, however, differs significantly from the correct values, especially 
when the last crack segment is short. In Fig. 6.2 the resolved shear stress along plane 2 
is shown. It can be seen that also here the model with four crack segments shows good 
agreement with the correct values. However, the discrepancy was somewhat larger than 
along the upper slip plane for both simplified models. The resolved shear stress for 
plane 3 is seen in Figs. 6.3 and 6.4, with Fig. 6.4 an enlargement of Fig. 6.3. The 
resolved shear stress is positive when the last segment of the crack is short and negative 
when this segment gets longer. Along this slip plane the difference between the models 
is small when the last segment of the crack is long but relatively large, as compared to 
the other slip planes, when the last segment of the crack is short. 

Also when calculating the resolved shear stress, the model with four crack segments is 
more accurate than the model with three crack segments. The same trend as observed 
when studying the nucleation stress; an increase in length of the last segment of the 
crack gives more accurate results, applies also in this case, and the simplified models 
give the most accurate results along the upper slip plane. It was also observed that an 
increase in number of crack segments of the correct crack results in lowered shear stress 
in front of the crack. This is because the stress field induced by the corners of the crack 
shields the crack tip and lowers the stresses. The same effect, that the stress intensity 
factor is reduced after kinking, has been found by Melin [8]. 
 
 
CONCLUSIONS   
 
It was found that a simplification of a zigzag shaped short crack through modelling the 
crack by its initial, straight configuration connected with the two last crack segments by 
a straight crack segment satisfactorily predicts nucleation stress as well as resolved 
shear stress in front of the crack. This significally reduces the computational efforts and 
makes it possible to follow the crack growth during a large number of load cycles, 
enabling growth through several grains.  
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