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ABSTRACT. An accelerated predictor-corrector scheme is presented to speed up the 
simulation of 3D fatigue crack growth for problems with linear-elastic material 
behavior. Based on the highly accurate stress field - computed with the 3D dual 
boundary element method (Dual BEM) - the stress intensity factors (SIFs) are 
calculated by an extrapolation method. The crack deflection as well as the crack 
extension is controlled by these SIFs. Due to the nonlinear behavior of crack growth an 
incremental procedure has to be applied. Based on experimental evidence it is assumed 
that the crack front shape ensures a constant energy release rate along the whole crack 
front, which means a constant KV. Starting from a crack front satisfying this 
requirement a predictor step is performed. Usually, the new determined crack front 
does not fulfill the requirement of a constant energy release rate. Several corrector 
steps are needed to find the correct crack front. Increasing the efficiency of the 
corrector steps, the history of the crack path is taken into account in the predictor-
corrector scheme. Since the total number of simulations decreases the calculation time 
is reduced significantly. The efficiency of the presented predictor-corrector scheme is 
demonstrated by comparing numerical examples with precise experimental results. 
 
 
INTRODUCTION 
 
The simulation of three dimensional fatigue crack growth requires an effective 
numerical tool. Due to the non-linear nature of crack growth, an incremental procedure 
is necessary. In each loop a complete stress analysis has to be performed and the stress 
intensity factors (SIFs) have to be calculated. Then a 3D crack growth criterion is 
utilized, which controls the crack extension and the crack deflection. Finally the 
discretization has to be updated for the next incremental loop. 

As the 3D dual boundary element method (Dual BEM) [1] is especially suited for 
linear-elastic stress concentration problems it is applied to solve the boundary value 
problem. Then, the SIFs as well as the T-stresses are evaluated at discrete points Pi 
along the crack front by an extrapolation method. The optimized evaluation of very 
accurate SIFs along the crack front is done from the numerical stress field by a 



regression technique controlled by the standard deviation [2]. A 3D crack growth 
criterion based on these SIFs determines a new crack front. It is assumed that the new 
crack front is characterized by a constant energy release rate along the crack front [2]. 
The whole concept is realized in terms of a predictor-corrector procedure.  

To perform the crack growth simulation as fast as possible the complexity of the 
predictor-corrector concept has to be minimized. On the one hand a new predictor 
strategy and on the other hand an improved corrector concept are presented.  

The efficiency of the optimized scheme is shown by numerical examples where both 
concepts are applied. 

 
 

STRESS ANALYSIS 
 
First the boundary value problem of the current crack configuration has to be solved, 
cf. Fig. 1. This is done by the 3D dual boundary element method (3D Dual BEM) [1]. 
 

 
 

Figure 1. Sketch of the boundary value problem. 
 

The body 3ℜ∈Ω  including any number of cracks is homogeneous and isotropic 
with linear elastic material behavior. The whole boundary Γ  of the domain Ω  is 
divided into the normal boundary nΓ  and the coincident crack surfaces cΓ  and cΓ . 
Along the boundary Γ  Dirichlet and Neumann boundary conditions are prescribed.  

Usually, it is sufficient to evaluate the displacement boundary integral 
equation (BIE). However, this procedure leads to a singular system matrix for problems 
containing a crack [3]. Hence, the coincident crack surfaces have to be separated. For 
this purpose the so called dual integral formulation is a suitable technique. Thus, the 
crack is described within one sub-region without any discretization in the area of stress 
concentration in front of the crack [1].  

The strongly singular displacement BIE is evaluated for nodes on the normal 
boundary and on one crack surface. Additionally, the hyper-singular traction BIE is 
applied for nodes on the remaining crack surface. Both BIEs are evaluated in the 
framework of a collocation method. 

Using the collocation method leads to a fully populated and non-symmetric system 
matrix. The storage capacity of this matrix is of the order O(N2) for N degrees of 



freedom (DOF). As long as the matrix fits into the random access memory (RAM) of 
the computer a fast iterative solver (GMRES) is used, which requires O(M x N2) 
operations for M iterations. Exceeding the memory requirements the storage capacity of 
the computer a slower Gaussian elimination with O(N3) operations is applied. In order 
to utilize the iterative solver even for such large problems the system matrix has to be 
compressed to fit in the RAM again. 

A first attempt to reduce the memory requirements is the application of the dual 
discontinuity method (DDM) [4]. By introducing the discontinuities of the 
displacements and tractions at the crack one crack surface is eliminated for the 
integration. Furthermore, the linear system of equations is reduced by the DOF of one 
crack surface. The real displacements and tractions are calculated in a post-processing 
step. The DDM reduces the DOF of the set of linear equations without losing accuracy.  

The effect of the DDM is valuable but less essential, if the number of DOF of one 
crack surface is low. To decrease the memory requirements further other matrix 
compression techniques have to be applied. Here, the adaptive cross matrix 
approximation (ACA) is utilized [5].  

 
 

AUTOMATIC 3D CRACK GROWTH ALGORITHM 
 
The new crack front is generated in three steps as shown in Fig. 2 [6]. 
 

 

 
 

Figure 2. Three steps of an increment 
 

First, the stress intensity factors (SIFs) have to be calculated. Therefore, discrete 
points Pi of the 3D crack front – normally the nodes of the utilized mesh – are 
considered, see Fig. 2a. For each point a set of SIFs – KM(P) – and T-stresses – Tij(P) –  
are calculated from the stress near field by an extrapolation method. The results of the 
utilized regression analysis are optimized by the minimization of the standard 
deviation [2]. For points Pi at a smooth crack front the typical stress distribution is given 
by [7]: 
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The SIFs KM (M = I,II,III) characterize the intensity of the typical square root 
singularity while Tij denotes the T-stresses. ( )ϕΜ

ijf  are the angular functions 
corresponding to the M modes. 

In the second step the new position of the crack front has to be determined by the 
evaluation of a suitable crack growth criterion based on the SIFs and T-stresses. The 
obtained crack extension as well as the kink angle define the new position of the 
point Pi, cf. Fig. 2b. The new positions of the crack front points set up the new crack 
front. In case of surface breaking cracks 3D corner singularities are present at the 
intersection of the crack front with the normal boundary [8]. Experimental observations 
have shown a special crack front angle γ  [9]. The angle γ  only depends on the Poisson 
ratio ν  and the geometrical situation around the singular point. Numerical analysis of 
this behavior have shown that at these points the square root singularity is existent. 
Thereby the crack front angle can be determined by a singularity analysis for a given 
crack configuration and the crack extension as well as the deflection results from 
keeping this crack front angle.  

Finally, the gap between the old and the new crack front has to be closed. Two 
possibilities are available. On the one hand a new row of elements is inserted [6]. This 
is a good choice if there are significant crack extensions for example in case of predictor 
steps. On the other hand in case of corrector steps only small crack extensions along the 
whole crack front occur. Therefore, the nodes of the old crack front are moved towards 
the new crack front. Surface breaking cracks require an additional treatment because the 
discretization of the normal surface has to be adapted. If a new row of elements is 
inserted a local area around the surface breaking point is re-meshed [2]. Otherwise, if 
only the nodes are moved, a smoothing algorithm [10] is applied. This guarantees a 
homogeneous mesh for reliable results in the next increment. 

 
 
OPTIMIZED PREDICTOR-CORRECTOR SCHEME 
 
Within each increment of the 3D crack growth algorithm the position of the new crack 
front is determined by a crack growth criterion. Starting from the old crack front this 
criterion provides the crack extension as well as the crack deflection.  

It is assumed that a real crack front shape ensures a constant energy release rate 
along the whole crack front and the direction of the crack propagation is perpendicular 
to the maximum principal stress. If the current crack front satisfies these requirements a 
new crack front is predicted. However, the determined crack front shape does usually 
not meet this requirements so that corrector steps are necessary. This procedure is 
implemented in a predictor-corrector scheme. 

 
Predictor 



Within a predictor step the crack extension ( )Pa∆  and the kink angle ( )Pϕ  for all 
points Pi along the crack front have to be determined. The crack deflection is calculated 
by the maximum principal stress criterion  [2]. 

The crack extension ( )Pa∆  is the more interesting part in the simulation because it 
differs along the crack front and it changes permanent. Therefore a user-defined 
incremental length 0a∆  is distributed along the crack front depending on the energy 
release rate ( )PG  [11]: 

 ( ) ( )
max

0 G
PGaPa ∆=∆ . (2) 

Another possibility is an exponential distribution based on the Paris-law [11]: 
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m is the Paris-Erdogan-exponent whereas KV(P) is the effective stress intensity factor 
and for pure Mode I it is identical to KI(P). The requirement of a constant energy release 
rate is equal to a constant distribution of KV(P) along the whole crack front. This leads 
to a constant incremental length ( )Pa∆  for all points P. Thus, the history of the crack 
propagation is taken into account. Additionally to the current crack front an the former 
crack front an-1 is considered calculating the incremental length ( )Pa∆ . The crack 
extension ( )Pa∆  results from 

 ( ) ( ) ( )PxPxrPa nn 1−−⋅=∆ , (4) 
where xn(P) is the current position of the point P and xn-1(P) the position at the 

former crack front. The factor r is a relaxation parameter that controls the distance of 
two successive crack fronts. The relaxation factor usually ranges between 0.8 and 1.25. 

This optimized prediction still needs to be controlled and if necessary the crack front 
shape has to be corrected. The number of corrector steps is already reduced strongly by 
the new concept. Further improvements can be reached by optimizing the corrector 
procedure. 
 
Corrector 
A predicted crack front usually misses the requirement of a constant energy release rate.  
A first approach to obtain a crack front shape meeting this requirement is the following 
distribution [6] 
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Modifying the crack front with this extension leads to the desired crack front after 
several iterations. As every iteration is time consuming the total number of increments 
should be minimized. Therefore, from the second corrector step on the effect of the 
previous step is analyzed and the results are utilized for the present correction step by 
inserting a strengthening factor s. Furthermore, in analogy to Eq. 3 an exponential 



strengthening based on the Paris-law is introduced. Thus, the incremental length is 
written as  
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The exponent m denotes the Paris-Erdogan-exponent as shown in Eq. 3. The 
strengthening factor s is calculated by analyzing the reduction of the variation of KV.  
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In this equation ( )i
a
V PK  is the actual effective stress intensity factor at the i-th point 

out of n analyzing points along the crack front. ( )i
o
V PK  is the effective stress intensity 

factor of the previous crack front and VK  is the averaged effective stress intensity factor 
of the current crack front. 
 
 
NUMERICAL EXAMPLE 
 
The efficiency of the presented predictor-corrector scheme is demonstrated by a fatigue 
crack growth experiment. This scheme can also be applied to mixed-mode problems but 
already mode-I problems raise many interesting questions. Furthermore, many failures 
in industrial applications are caused by mode I and for this mode well documented 
experimental results are available. Fig. 3 shows the considered 4-point bending 
specimen with an “M”-shaped cross section.  
 

 
 

Figure 3. Four point bending specimen 
 
In the middle of the center leg a quasi-elliptical corner crack is located. To be able to 

observe the crack growth the transparent material PMMA (E ≈ 3.6 GPa, ν ≈ 0.36) is 



used. The force F of the cyclic loads was reduced from F = 3 kN down to F = 1.6 kN to 
guarantee stable crack growth conditions during the whole crack propagation.  

The experimental results [12] are shown in Fig. 4. First, the crack grows in both 
directions – horizontal and vertical – at approximately the same speed. The closer the 
crack approaches the rear surface the faster the crack grows horizontally compared to 
vertically. When the crack reaches the rear surface it grows rapidly in this region 
whereas on the front side crack arrest is observed. Afterwards, stable crack growth 
along the whole crack front is monitored once again.  

 

 
 

Figure 4. Experimental crack front shapes [12] 
 
The numerical simulations, as shown in Fig. 5, start with the situation after 200.000 

load cycles. In Fig. 5a the simulation with the conventional predictor-corrector scheme 
is shown whereas in Fig. 5b the simulation with the optimized predictor-corrector 
scheme is presented. The first predictor step is identical in both cases. The application 
of the new corrector scheme leads to a reduced number of corrector steps by one-third. 
Using the new predictor length, the next four predicted crack front shapes only require 
up to three corrector steps while with the classical concept obviously more steps are 
needed.  

Another interesting part in this simulation is the behavior of the predictor-corrector 
scheme after reaching the rear surface. Using the new scheme, the number of corrector 
steps is reduced from more than 60 steps down to 16 steps to obtain a crack front shape 
with a constant energy release rate.  

Overall, a broad reduction of the corrector steps (factor > 3) is observed by applying 
the new predictor-corrector scheme. 

 
 



 
 a) conventional predictor-corrector scheme b) optimized predictor-corrector scheme 
 

Figure 5. Numerical simulation of the crack growth 
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