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ABSTRACT.  A general method for evaluating the fracture mechanics parameters of a 
subsurface crack parallel to the free surface of a semiplane is presented. A Weight Function 
(WF) with a matrix like structure is proposed to account for the coupling effects arising in 
non-symmetrical problems.  An estimate of the WF accuracy is presented and a practical 
application is considered by evaluating the Stress Intensity Factors produced by a point like 
load travelling on the semiplane free surface. The complete analysis of this problem 
requires crack closure (either complete or partial) to be taken into account. Indeed different 
closure conditions are expected for different load positions or inclination. A theoretical 
method is proposed, that, starting from the matrix like structure of the WF, allows for the 
calculation of the Green Functions, by which the COD components of a subsurface crack s 
can be calculated under general loading conditions  including those produced by crack 
closure.  

 
 

INTRODUCTION 
 

Subsurface cracks have been experimentally observed in several mechanical 
components. The early stages of fatigue crack growth parallel to the external surface, under 
variable loading, are generally characterized by mixed fracture mode and dominates the 
onset damage mechanisms responsible for many failures such as spalling in rolling contact 
fatigue or pitting fatigue [1-3]. These phenomena have been studied by several authors in 
the framework of the fracture mechanics and many analyses have been carried out for 
determining the fracture mechanics parameters of the crack.  The Finite Element (FE) 
method have been used extensively to evaluate the Stress Intensity Factors  (SIFs) under 
complex loading conditions and to predict the preferred crack paths [4-6]. Unfortunately, 
FE analyses, since very powerful, are very time consuming, particularly when the crack 
propagation has to be predicted and a lot of SIF calculations have to be performed under 
several loading conditions of the cracked body. The Weight Function (WF) method turns 
out to be particularly efficient for solving this kind of problems. The authors [7-8] have 
recently presented a WF for a subsurface crack parallel to the external surface in a two-
dimensional half space. The WF has been formulated with a matrix like structure to account 
for the coupling effects arising in non symmetrical problems and built up into a symmetrical 
and an anti-symmetrical components, as usual for embedded cracks, thus allowing for a 



straightforward evaluation of the FM parameters under a completely general loading 
condition. 

In the present work an extended formulation of the WF is presented, to encompass a 
broader range of the ratio between the crack length and its distance from the free surface. 
The proposed WF is adopted for studying the cyclic SIF histories induced at the crack tips 
by a point like load travelling on the free surface of the semi-plane. The analysis is carried 
out for different ratios between crack length and crack distance from the free surface and for 
different inclinations of the travelling load, in order to simulate different friction conditions. 
Since the complete analysis of this problem requires to account also for the conditions of 
complete or partial crack closure, depending on the load position with respect to the crack 
and on the load inclination with respect to the free surface, a theoretical method is proposed, 
that, starting from the matrix like structure of the WF, allows for the calculation of the 
Green Functions (GF) by which the COD components can be calculated under general 
loading conditions, including the conditions of crack closure.  
 
 
1 – DEFINITION OF THE PROBLEM  
 

In an elastic semi-plane, an embedded crack having length 2a and distance b from the 
semi-plane surface is considered as represented in figure 1. As explained in [7-8] two local 
reference systems were introduced at the crack tips in order to provide a not ambiguous 
definition of  the FM parameters (in particular regarding the sign of KII for which a general 
definition is not adopted).  
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Fig.1 Subsurface crack parallel to the semiplane surface 

The dimensionless ratio /r a b=  can be assumed as the only geometrical parameter 
necessary for defining the geometry. Since a matrix like formulation of the WF is necessary 
to account for the lack of symmetry of the problem, the following general expression was 
adopted for the WF, where for the tip A and the tip B, the anti-symmetrical contribution has 
to be summed to (+), or subtracted from (-) the symmetrical contribution, respectively: 
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The analytical expressions of the WF  were defined by fulfilling their asymptotical 
properties (either for 0r →  or x a→ ). In particular, as the r ratio approaches zero, the 
crack can be assimilated to the Griffith crack in an infinite body for which the following 
uncoupled relationships hold: 
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Therefore, for solving the integral equations (1) the following expressions were 
assumed, by which, adopting the notations M = I or II (mode of facture), µ=σ or τ (nominal 
stress component) and C=S or A (symmetrical or antisymmetrical), the WF components are 
expressed either:   
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Equation (3) holds for ( , , )I
Sh x r aσ , ( , , )II

Sh x r aσ , ( , , )I
Ah x r aτ  and ( , , )II

Ah x r aτ , whereas 
eqn. (4) holds for ( , , )I

Ah x r aσ , ( , , )II
Ah x r aσ , ( , , )I

Sh x r aτ  and ( , , )II
Sh x r aτ . In the present 

analysis the number of terms of the power expansion was limited to 3, so that n=2 in the 
summations (3) and (4). In order to fulfil the general asymptotic conditions, expressed by 
(2), the first coefficients corresponding to i=0 for the diagonal and off-diagonal terms of the 
WF are respectively: 

( ) ( ) 1 for 0 and orM M
S i A ic r c r i M I IIµ µ µ σ τ= = = =               (5a) 

( ) ( ) 0 for 0 and orM M
S i A ic r c r i M II Iµ µ µ σ τ= = = =                (5b) 

The other coefficients corresponding to i>0 depend on the r ratio. In order represent the 
dependence over a wide range of r the following function was considered: 
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The constant parameters Ai, Bi, Ci, Di, Ei, Fi were determined by least square fitting the 
SIF values calculated for reference loading conditions at different r ratios. In particular, 
having assumed n=2, eight linearly independent nominal stress distributions applied on the 
crack edges were considered, as described in [8]. A data base of SIFs values was built up by 
performing several FE analyses with r ratio varying over a wide range [0.005, 40], in order 
to encompass the two limit conditions for the crack: an embedded Griffith crack and a 
shallow delamination immediately beneath the free surface. The SIFs calculated by using 
the WF for the reference cases were compared with the original values obtained by the FE 
analysis. The relative differences between the WF and the FE SIFs for both Modes showed 
a satisfactory agreement being generally within 1.0% in the whole considered range of r. 



These differences are within the estimated range of accuracy for the FE SIF evaluation thus 
indicating  the adequacy of the chosen functions (eqn. 6) for interpolating the FE results in 
the whole r range.  
 
 
THE SIFs PRODUCED BY A POINT LIKE TRAVELLING LOAD 
 

With reference to figure 2, a plane body carrying a subsurface crack loaded by a force 
uniformly distributed through thickness having intensity P (force per unit thickness) was 
considered.  
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Fig. 2: point like load moving on the surface 

 
The normal (Py ) and tangential (Px) forces were applied at a parametrical distance L 

from the crack centre thus reproducing the conditions of a travelling force. Inertia forces 
were neglected. Material is considered linear elastic and no contact between crack edges is 
taken into account. Under these assumptions material overlapping is permitted even though 
without physical meaning. 

The nominal stress produced either by Py or Px in the uncracked body to be used in eqn. 
(1) can be deduced by the analytical Boussinesq solution [9] and subdivided in a 
symmetrical and an anti-symmetrical component. By solving the integral equation in eqn. 
(1) the KI and KII values for different relative load positions (L/a) and r were calculated, and 
two examples of the obtained trends are reported in figure 3, together with results of a FE 
analysis of the problem. In this case a characteristic SIF values: 

a
PKO

π
⋅=

, was adopted to 

normalize the numerical results. A very good agreement between FE and WF results was 
found, being the relative difference in the order of 1%.  As regards the load normal to the 
body surface and pointing inwards the semiplane, SIFs histories with KI always negative are 
predicted (fig. 3). For this condition it is therefore reasonable to predict an always 
completely closed crack, subjected only to reversed cycles of KII. On the contrary, for loads 
tangential to the free surface very complex KI and KII histories  are predicted (fig.4) and 
conditions of partial or complete crack closure are expected. The problem of a travelling 
force inclined with respect to the semiplane surface can be evaluated, by neglecting the 
contact between crack surfaces,  as a superimposition of the effects of normal and tangential 
forces. This analysis is however consistent, from a physical point of view, only if  the crack 
is completely open during the load movement. In the case of partial crack closure the 
evaluation of the SIFs is a non linear problem, as the boundary conditions  are unknown a 



priori and they depend on the applied load. The knowledge of the closed crack region is 
necessary for the evaluation of the contact stresses on the crack surfaces, by which the 
effective SIFs can be determined via WF, as a superimposition of their effects to those of 
external stresses. The problem can be efficiently faced if the Green Function (GF) giving 
the COD components for a general loading condition is determined. 
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Fig. 3 SIF produced by the normal (compressive) force Py travelling on the surface for two r ratios  
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Fig. 4 SIF produced by the tangential force Px travelling on the surface for two r ratios  

 
 

EVALUATION OF THE GREEN’S FUNCTION FOR THE COD  
 

On the basis of the WF definition, the COD components u and v, indicating the relative 
displacements of corresponding points C+,C- and D+,D- on crack edges (figure 1), in the x 
and y direction, can be calculated for symmetrical and anti-symmetrical load cases by using 
the symmetrical and anti-symmetrical components of the WF respectively. Any loading 
condition can be subdivided into a symmetric and an anti-symmetric components, so that 
the corresponding COD components can be calculated as the summation of the CODs 
originated by the two loading conditions. By generalizing the formulation reported in [10] 
the following equations hold: 
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where, as for eqn. (1),  A/B refers to the right and left crack tips, H is equal to E (Young 
modulus) for plane stress and E/(1-ν2) for plane strain (ν is the Poisson’s ratio). The values 
(KIS,KIIS) and (KIA,KIIA ) are produced respectively by the symmetric and anti-symmetric 
load cases and, by recalling eqn. (1), can be evaluated as follows: 
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By indicating the WF with a matrix notation as follows: 
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After introducing the expressions of eqns. (8) into eqns. 7, and changing the order of 
integration [10],  the following expression is obtained: 
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Where [ ]T is the transpose matrix. By introducing the following 2x2 matrices: 
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Equation (10) can be rewritten as: 

[ ] [ ]












⋅







⋅±








⋅⋅=








∫∫ '

)'(
)'(

),',('
)'(
)'(

),',(2
),,(
),,(

00

/

dx
x
x

rxxGdx
x
x

rxxG
Hraxu

raxv

A

a

A
S

a

S

BA

τ
σ

τ
σ

   (12) 

Thus demonstrating that [G(x,x’,r)] represents the Green’s functions (GF) as it relates the 
load applied on the crack faces to the local displacement. Considering the power law 
expansion proposed for the WF (eqns. 3-4) and taking into account of the combination 



between the different WF terms in the matrix product of eqn. (11), the GF can be obtained 
by solving 3.(n+1)2 integrals of one variable. Having assumed n=2 for the WF, the number 
of integrals to be evaluated is 27. However, by considering that due to the asymptotic 
properties of the WF, some of the WF coefficients are zero, the evaluation of only 22 of the 
27 integrals is necessary.  In particular, the following three classes of integrals have to be 
determined: 
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Integrals of type I1 and I3 were analytically solved by using a recursive strategy, whereas 
I2 integrals were reduced to the solution of elliptic integrals. By knowing the analytical GFs, 
the COD components can be determined at any location of the crack for any loading 
condition by eqn. (12) when the nominal stress components σ(x) and τ(x) are known on the 
crack edge. The problem of crack closure can therefore be faced in an efficient way by 
using the procedure explained in [11] for non symmetrical problems, that accounts for 
couplings effects, active between normal stresses and tangential displacement and between 
normal displacement and tangential stress. An example of the COD v component calculated 
by the proposed GF approach and by the FE modelling is shown in figure 5, where the 
conditions of partial crack closure produced by a load P inclined by an angle of 45° with 
respect to the normal at the free surface and pointing inward the semiplane are plotted.  
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Fig. 5: v components of COD calculated by  the GFs method and by the FE analysis. The 

v values are normalised by the following characteristic parameter v0=a.σo/E (σ0=2P/πa)  



CONCLUSION 
  

An analytical matrix like formulation  of the WF for a subsurface crack parallel to the 
free surface of a semi-infinite body was proposed. The results of a Finite Element analysis 
carried out for several independent loading cases were used for evaluating the numerical 
coefficients of the WF.  The obtained WF reproduced the FE results with a good accuracy.  

The problem of a load travelling on the free surface of a semi-infinite body carrying a 
subsurface crack was then studied. The conditions of partial crack closure were initially 
disregarded and under these hypothesis the SIFs calculated by the WF were in very good 
agreement with those determined by FE analysis, thus showing the usefulness of the WF. A 
theoretical analysis is then proposed to account for the effects on SIFs exerted by the 
contact phenomena between crack faces in the case of partial crack closure. Starting from 
the matrix like formulation of the WF and considering the theoretical definition of the COD, 
the Green’s Function for the COD was proposed in the form of symbolic integrals. 
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