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ABSTRACT. When fracture occurs in a concrete dam, the crack mouth is typically
exposed to water. Very often this phenomenon occurs at the dam-foundation joint
and is driven also by the fluid pressure inside the crack. Since the joint is the
weakest point in the structure, this evolutionary process determines the load bearing
capacity of the dam. In this paper the cracked joint is analysed through the model
proposed by Cocchetti, Maier and Shen [1] which takes into account the coupled
degradation of normal and tangential strength. The water pressure inside the crack,
which reduces fracture energy and increases the driving forces, is analysed through
the model proposed by Reich, Brühwiler, Slowik and Saouma [2]. Some numerical
results are presented which refer to the benchmark problem proposed in 1999 by
the International Commission On Large Dams [3]. In concrete dams, cracks are
present and may be of considerable dimensions since the beginning of dam life. When
fictitious process zone is completely developed and the water penetrates inside the
crack, a small cycle in water level is enough to make locally a complete unloading
and reloading cycle.

INTRODUCTION

When cracking occurs in a concrete dam the crack mouth is typically exposed to
water. Very often this phenomenon occurs at the dam-foundation joint and is driven
also by the fluid pressure inside the crack. Since the joint is the weakest point in
the structure, this evolutionary process determines the load bearing capacity of the
dam. In this paper the cracked joint is analysed through the model proposed by
Cocchetti, Maier and Shen ([1], shortened CMS) which takes into account the cou-
pled degradation of normal and tangential strength at the dam/foundation interface.
The water pressure inside the crack, which reduces fracture energy and increases the
driving forces, is analysed through the model proposed in [2]. The crack opening
displacement induces two consequences: (a) concrete permeability increases, and (b)
water pressure increases. Each one of these two phenomena drives the other. Some
results are presented which refer to the benchmark problem proposed in 1999 by the
International Commission On Large Dams [3]. Similar water/fracture interaction
phenomena are observed in the analysis of retaining walls and rock slope stability.
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Figure 1. Piecewise linear model.

JOINT MODELS

A joint is a locus of possible displacement discontinuities. The separation phe-
nomenon is analysed in the plasticity framework since an irreversible process occurs.
The displacement discontinuity vector w is assumed to be the sum of a reversible
(superscript e) and an irreversible (superscript p) contribution:

ẇ = ẇe + ẇp and ṗ = K0 ẇe = K0 (ẇ − ẇp) (1)

Damage initiation phase

According to the CMS model proposed in [1, 4], damage initiation occurs when
the stress path achieves the piecewise linear yield or activation function shown in
Fig. 1, where pn is the normal traction, χ0 its ultimate value in pure tension, pt

is the tangential traction, c0 the cohesion and µ the Coulomb friction angle. The
activation function consists of a vector of ϕy whose components or modes correspond
to half-planes in the bi-dimensional stress space. The intersection of such half planes
is a convex domain that constitutes the region of elastic behaviour of the joint. Each
component ϕi depends on cohesive tractions p and static internal variables χ:

ϕi = ϕi(p,χ)

{

< 0 inactive joint
= 0 active joint

The point where damage initiation occurs is called fictitious crack tip (shortened
FCT). During the evolutionary process, it moves from the upstream edge to the
downstream edge.



Damage evolution phase

Once the necessary activation condition ϕ = 0 is met, irreversible displacements
ẇp can develop along the interface:

ẇp =
∂Q(p,χ)

∂p
λ̇ λ̇ ≥ 0 (2)

where the plastic potential Q is defined in such a way that the interface fracture
work without friction is controlled as explained later. The portion of joint where
damage evolves is called fictitious process zone (shortened FPZ).

The main characteristic that differentiates the CMS model from Carol’s [5] and
Červenka’s [6] is that all equations are linearised, hence the nonlinearity of the model
is contained only in the complementarity conditions. A first set of five relations,
also referred to as Kuhn-Tucker conditions, can be written with reference to the
plastic multiplier λ̇y associated with the inelastic displacement direction Vi (shown
in Fig. 1):

ϕy ≥ 0 λ̇y ≥ 0 ϕy λ̇y = 0 (3)

When the stress path is inside the elastic domain, all components ϕi are positive
and therefore all components λ̇i vanish. When the stress path achieves the activation
function, a component ϕi vanishes and the corresponding λ̇i becomes positive. A first
set of complementarity relations specifies the conditions for the onset of softening
along a branch.

Now a second set of complementarity relations has to be introduced. When
the traction mode (ϕ1 = 0) is activated, the linear softening law is completely
determined by the condition that the energy dissipated is the traditional Mode I
fracture energy GI

F [7]. The softening branch is bounded; when the displacement
discontinuity, along a pure traction mode, reaches the critical values wc = 2GI

F /χ0,
the cohesive forces vanish. The condition for the arrest of softening in this case can
be written through a sixth complementarity relation.

Similarly, when two shear modes (ϕ4 = 0) or (ϕ5 = 0) are activated, the linear
softening law is completely determined by the condition that the energy dissipated is
the Mode II fracture energy GIIa

F under high normal confinement and no dilatancy
proposed by [8] in the context of the microplane model. The determination of
pure Mode II fracture energy GII

F would require a pure shear test, without normal
confinement, which is extremely difficult to perform. That is the reason why GIIa

F is
preferred as a material property. The softening branch is bounded; when interface
fracture work without contribution from friction, along a pure shear mode, reaches
the critical value GIIa

F , the cohesive tractions vanish and the interaction forces are
due to friction alone. The condition for the arrest of softening in this case can be
written through a seventh complementarity relation. When the cohesive-frictional
modes (ϕ2 = 0 or ϕ3 = 0) are activated, the critical condition is related to both
displacement discontinuity components as shown in [1]. Along this separation mode,



when the condition for the arrest of softening is reached, the residual tangential stress
is assumed as constant (see term c̄ in Fig. 1).

The last complementarity relation of the model regards the dilatant behaviour
associated with λ2 and λ3 (see µd0 in Fig. 1). It appears reasonable to assume
that there is a limit to the dilatancy of a joint. Therefore a plastic multiplier λ8 is
activated in order to store the total of λ2 and λ3 exceeding the parameter wdil. Along
this separation mode, when the condition for the arrest of softening is reached, the
residual tangential stress is assumed to be dependent on Coulombian friction (see
term µ|pn| in Fig. 1).

MODELING WATER INSIDE THE CRACKS

As a consequence of additional damage occurring inside the FPZ due to the
presence of water, it is assumed that fracture energy GF reduces as pressure pw0

increases. The apparent value of GF is assumed to be expressed by the following
relationship [9]:

ĜF = GF

[

1 − 2
pw0

χ0

+

(

pw0

χ0

)2
]

= GF S (4)

The ratio pw0

χ0

is identified as damage number. If pw0

χ0

= 0, i.e., S = 1, the
material is considered undamaged and therefore, the softening law is derived from
the traditional fracture energy measured in dry conditions. If pw0

χ0

= 1, i.e., S = 0,
the material is considered fully damaged and fracture energy vanishes. The stress-
opening law is now assumed in such a way that the openings are scaled through the
factor S, i.e., ŵ = S w.

The pressure distribution is assumed to be described by two polynomial functions.
Defining Ψ = w

ww0

and Φ = pw

pw0

, we can write:

Φ = f1(Ψ) = a1 + b1Ψ + c1Ψ
2 + d1Ψ

3 Ψ ≤ Ψ1 (5)

Φ = f2(Ψ) = a2 + b2Ψ + c2Ψ
2 + d2Ψ

3 Ψ ≥ Ψ1 (6)

It must be remarked that the eight constants of Eq. 6 are obtained by imposing
six geometrical conditions and two mechanical conditions.

Value Ψ0 corresponds to crack opening w below which pw0 = 0, while Ψ1 corre-
sponds to the knee point w1. Values Ψ0 and (Ψ1, Φ1) (transition point between f1

and f2) and value ww0 (shown in Fig. 2), are defined as (κ ≥ 2 is a constant):

Ψ0 = Ψ1 −
2

κ
Ψ1, Φ1 =

2 Ψ1

2Ψ1 + κ (1 − Ψ1)
, ww0 = ŵ1 +

2

ξ
(ŵc − ŵ1) (7)
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Figure 2. Water pressure distribution inside the crack.

Dam and found. Dam and found. χ0 c0 GI

F
GIIa

F
µ µd0 w1 wc

Young modulus Poisson ratio
(Pa) – (Pa) (Pa) (N/m) (N/m) – – (m) (m)

2.4e10 0.15 0.8e6 2.8e6 100 350 0.577 0.1 1.0e-4 4.5e-4

Table 1. Material properties.

EXAMPLE OF APPLICATION

As an example of application, the benchmark problem proposed in 1999 by the
International Commission On Large Dams [3] was analysed (dam height 80m, base
60m). The gravity dam was discretized through 81081 elements, mainly quadrilat-
eral with side of 0.16m. The foundation was subdivided into 15561 quadrilateral
elements and the boundary into 555 infinite elements. Table 1 shows the material
properties assumed. The parameter wdil is taken to be 0.002m.

NUMERICAL RESULTS

The dam is analysed under self weight application, reservoir filling and imminent
failure flood. Since the joint is the weakest part in the structure, the remaining
material behaves in a linear elastic way.

Self weight application

In concrete dams, cracks are present and may be of considerable dimensions due
to previous exceptional events [10]. Therefore, as a result of the damage experienced



by the dam in its history, an unbonded portion (0.8m) of the dam/foundation joint
was assumed to pre-exist, starting from the upstream side.

During self weight application, this portion is closed and subjected to friction
due to Poisson effect. In this phase no uplift pressure is applied. The corresponding
crack mouth sliding displacement (CMSD) is opposite in sign with respect to the
same displacement induced by water pressure during the reservoir filling phase. For
the boundary condition analysed, since a high compressive field is applied at the tip
of the unbonded joint zone, no damage growth occurs (all ϕi < 0 everywhere). This
phase is modeled through the classical theory of elasticity and the theory of contact
with Coulombian friction.

Reservoir filling

During the reservoir filling phase, as long as the joint is subjected to a high
compressive field, the solution evolves following the elasto-friction regime previously
described, with opposite sign of CMSD rate. The first damage occurs as soon as it
becomes ϕ2 = 0 or ϕ3 = 0 at the less compressed edge of the joint. For the initial
damage values analysed, this edge is always open when the full reservoir condition
is reached.

Imminent failure flood

In this paper, the parameter controlling failure is the water level above the full
reservoir condition, called overtopping water height (OVTH).

Figure 3 show crack opening displacement vs. the distance form upstream edge
up to the peak value of OVTH. For the material properties and boundary conditions
examined, the peak value of OVTH is found to be 2.5m.

Figure 4 show COD vs. OVTH diagram related to two points inside the FPZ.
When OVTH grows from 0 to 0.17m, i.e. 2.1/1000 of dam height, COD grows from
0 to w1.

CONCLUSIONS

For the material properties and boundary conditions analysed the following con-
clusions can be drawn:

• When FPZ is completely developed and the water penetrates inside the crack, a
small cycle in water level (2.1/1000 of dam height) causes a complete unloading
and reloading cycle in the FPZ.

• A reduction of GI
F and GIIa

F , induced by a cyclic loading, has to be taken into
account (see [11]).
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Figure 3. Crack opening displacement vs. distance from upstream edge.
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Figure 4. Examples of crack opening displacement vs. overtopping water height.

[5] Carol, I., Prat, P. and Lopez, C. (1997) A normal/shear cracking model: Application to
discrete crack analysis. Journal of Engineering Mechanics (ASCE), 123(8), 765–773.
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