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ABSTRACT. A series of in-phase axial-torsional smooth tube fatigue experiments were
performed using regular intermittent overloads in otherwise constant amplitude load his-
tories to achieve crack-face interference-free (crack closure free) fatigue crack growth.
Observations were made of not only the fatigue life but if andwhen the initial crack
growth on a plane of maximum shear stress range changed to crack growth on a plane
of maximum tensile stress range. Although there was a considerable scatter in the strain
and length at which changes in crack growth mode occurred, the general trend in the
data was that the crack length at which change occurred increased with increasing strain
and strain ratio. Two separate criteria for crack growth mode change from shear plane
to tensile plane crack growth were inserted into a strain based short crack fatigue crack
growth model. When the crack length at the change in mode was predicted using the first
criterion (based on choosing the plane that exhibited the maximum crack growth rate)
the boundary, which is formed on a strain versus crack lengthplot, fell at lower strains
than the data. Use of the other criterion (based on choosing the plane with the higher
strain energy release rate) yielded a boundary that indicated shorter than observed crack
lengths and an upper bound to the strain at which changes in mode were observed. Fa-
tigue lives predicted using the two forms of the model fell very close to each other and to
the experimental fatigue life data. The closeness in the life predictions produced by the
two forms of the model and the scatter in observed strain and crack length at the point
of mode change are assumed to be a consequence of nearly equalcrack growth rates for
tensile and shear mode crack growth.

INTRODUCTION

In the early 1970’s Elber [1, 2] demonstrated that crack closure substantially reduces
the mode I crack driving force seen at the crack tip, and a similar concept, crack-face
interference, has extended this idea to include modes II andIII. In this paper we present
cracking mode and fatigue life information for crack face interference free smooth tube
fatigue life tests. Also changes in cracking mode and fatigue life are predicted using a
short crack growth model and interference free mode I and II crack growth rate data.

Although eliminating crack-face interference is difficultto achieve, two techniques
have been successfully used – the application of sufficiently large constant tensile stresses



normal to the crack face [3, 4, 5, 6] (under mode I loading thismeans very high mean
stresses) and the periodic insertion into a constant amplitude stress history of very large
overloads (on the order of the net section yield stress) either normal to [5, 7] or in the
plane of the growing crack [5, 8, 9]. The first technique keepsthe crack faces apart, and
the second technique, depending on how it is employed, keepsthe crack faces apart and/or
crushes existing crack face asperities flat so that they no longer hinder crack growth. Once
crack-face interference has been eliminated we obtain the most conservative possible fa-
tigue curve for a given material.

These techniques were used by the present authors to developa series of biaxial crack-
face interference-free strain-life fatigue curves for normalized SAE 1045 steel for five
different but constant biaxial strain ratios (λ = εxy/εxx = 0, 3/4, 3/2, 3 and∞.) [8]. Ob-
servation of the paths that the growing (crack-face interference-free) fatigue cracks took
in the tubes revealed consistent behavior. Cracks initiated on planes of maximum shear
strain range, grew for a distance on these planes and then, insome cases, changed to
growth on planes of maximum tensile strain range. The lengthof the shear crack at which
the change from shear to tensile plane growth occurred depended on the small cycle strain
amplitude and the biaxial strain ratio: increasing either the amplitude or the ratio led to
increasing shear crack lengths, and often led to a shear crack which spanned the specimen
gage length. Even so, for given values of the strain amplitude and the biaxial strain ratio,
the observed maximum shear crack lengths varied substantially.

MATERIAL, PROCEDURES, AND EXPERIMENTAL RESULTS

In this investigation a normalized SAE 1045 steel with a nominal hardness of 203 BHN,
previously the focus of an SAE Fatigue Design and EvaluationCommittee multiaxial fa-
tigue study [10, 11], was used in both crack growth and fatigue life experiments. It has
a ferritic-pearlitic microstructure which is moderately banded longitudinally resulting in
ferrite-rich channels (in which fatigue cracks tended to grow) and pearlite rich channels.
The grains are roughly equiaxed and average 25µm in diameter. Microstructure and me-
chanical properties are detailed in [12].

All specimens were machined such that the rolling directionwas parallel to the long
axis of the specimen. Details of specimen design, preparation and testing of the smooth
unnotched axial dogbone and biaxial tubular specimens are given in references [8, 13].

Mode I crack-face interference-free crack growth testing was conducted on axial sin-
gle edge notched specimens. Mode II crack-face interference-free crack growth testing
was conducted on the biaxial tubular specimens used in the fatigue life experiments but
with a 0.25mm diameter hole drilled through the 2.54mm tube wall acting as a central
notch. All specimens were given a final longitudinal 5µm polish. All testing was con-
ducted using computer control at frequencies ranging from 1-40Hz for biaxial specimens
and 1-100Hz for axial specimens. Periodic overload histories, such as that found in the
insets in Figure 1a and b, were used in both the fatigue life testing and in most of the crack
growth testing. Further details of crack growth testing canbe found in reference [12].
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Figure 1. Effective (Mode I crack closure free or Mode II crack-face interference-
free) crack growth curves for normalized SAE 1045 steels.

Four SEN specimens were used to generate the crack closure-free long crack growth
data plotted in Figure 1a. Two tubular crack growth specimens were used to produce the
crack-face interference-free long crack growth curve in Figure 1b. Trend lines inscribed
on the data are the piecewise linearized crack growth curvesused in modelling.

CRACK GROWTH MODELS

Two versions of a single short crack growth model that used different algorithms to predict
the shear crack length at which the crack growth mode changedfrom shear to tensile were
used to predict the total fatigue lives and these transitions. These models were termed the
“area” and “energy” models after the two crack path selectoralgorithms used to decide
the change in crack growth plane. As well as these two different crack path selectors the
model used a strain intensity based short crack growth equation, separate surface strain
concentration factors for shear and tension modes, and different geometry factors for
each of the three crack growth modes. For stress intensity calculations, a crack length
projection technique was used to map the shear crack length into an equivalent tensile
crack length at the point of changeover in growth mode and during evaluation of the
crack path selector algorithm.

For all of the models cracks were assumed to begin as shallow surface cracks (or
persistent slip bands – PSB’s) of 3µmdeep by 100µm long (a by 2c), based on work in
reference [9]. Observations of crack initiation in smooth tubes indicated that these cracks
were oriented along the plane ofmaximum shear, except for those ratios (λ = 3 and
3/2) in which the shear cracks grew in the longitudinal ferrite channels.Further, cracks
were observed to nucleate on the outer surface of the tube andgrow inward. The model
predicts that, as the crack grows, it shape changes from the initial very shallow, elliptical
crack front toward a penny shape. Once the shear crack has grown through the first grain,



a depth of 25µm, the model is allowed to decide whether to change to crack growth on to
a plane of maximum tensile stress. When a tensile crack intersects the inner wall of the
tube (a = 2.54mm), it is assumed to change immediately into a through crack inthe tube
with a surface crack length equal to the outer surface crack length. Failure is assumed to
occur when the through crack reaches a length 2cf = 30mm(the tube gage length).If the
model predicted a growth mode change to growth on a tensile plane, it always occurred
at a crack depth of less than 300µm.

The same study [9] from which the initial crack size was drawnalso found that shear
cracks would predominantly grow in depth until about 80% of the total fatigue life was
reached. At that juncture the cracks started to grow in length and rapidly linked up with
adjacent shear cracks to form very long shear cracks. In the models a 300µmdepth corre-
sponded to roughly 80% of the fatigue life for strain amplitudes above the fatigue limit at
all strain ratios. Thus in the model it is assumed that, at a crack length of 300µm, a shear
mode crack links up with other similar shear mode cracks to form a crack that spans the
gage length. The shear crack then continues to grow until it penetrates the tube wall.

The experimental data from reference [12] was used to develop a ten piece linear
approximation of the mode I crack growth data (Figure 1a) andan eleven piece linear
approximation of the mode II crack growth data (as seen in Figure 1b) that were used in
modelling. The latter curve was used for both modes II and IIIcrack growth.

Crack Growth into the Tube Wall
In the first portion of the biaxial crack growth modelling, stress intensity equations sug-
gested by Socie, et al. [14] were modified into a strain intensity form (first suggested by
McEvily [15]):

∆KI (ε) = Qt
ε∆e11EFI

√
πc

∆KII (ε) = Qs
ε2∆esGFII

√
πc

∆KIII (ε) = Qs
ε2∆esGFIII

√
πc

wherec is the surface half crack length,E (G) is the elastic (shear) modulus, andF is
the crack geometry factor. In this formulation the tensorial shear strain on the shear crack
growth plane (∆es = {∆exy or ∆e12}) is half of the engineering strain (es = γs/2). The
local strain at the surface (ε) is related to the bulk strain (e) by Qε, the surface strain
concentration function proposed by Abdel-Raouf, et al. [16, 17]. This function captures
the influence of the near surface stress state in which the crack initially grows, and is of
the formQε = ∆ε

∆e = 1+qexp(−aα/D), wherea is the crack depth,D the grain diameter,
exp() is the natural exponent, andq andα are material constants. The expression forQε
is calibrated by adjustingα/D until the model correctly predicts the fatigue limit.The
tensile concentration factor,Qt

ε, was calibrated using a mode I crack growth model (a
penny shaped crack in a rod under tension [18] with an aspect ratio (a/c) of 0.8 taken
from fracture surface measurements and a failure crack length of af = 5.08mm), crack-
face interference-free mode I crack growth data, and uniaxial fatigue life data.The value
of α/D for tensile cracking was determined to be 105,000. The shearQs

εrequired a value
of α/D of 45,000 to match the torsional fatigue limit (λ = ∞). In this latter calibration a
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(a) Exterior elliptical surface crack.

�
�
�
�

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

t

2c

β

R

(b) Through-wall crack.

Figure 2. Definitions fora, c, β, θ, t, andR for a tube under axial-torsional loading.

form of the crack growth model was used that assumes continuous shear crack growth on
planes of maximum shear strain and employs the mode II and mode III geometry factors.

Geometry Factors for an Elliptical Surface Crack
Geometry factors (FI , FII , andFIII ) for an embedded elliptical crack of arbitrary shape
subjected to a tensile stress normal to the crack plane and a shear stress applied along its
major axis were used to model initial crack growth through the tube wall [19, 20, 21].
Versions of the mode I and mode II geometry factors, suitablymodified for surface crack
applications [14] by a 1.12× multiplier, were used in the models. Curve fits made to the
numerical solutions of the elliptical integrals (fromCRC Standard Mathematical Tables)
were used in the crack growth analyses. Figure 2a defines crack lengthsa andc, the crack
inclination angle (β), the parametric angle (θ) which defines the location along the crack
front where the geometry factors are calculated, the tube wall thickness (t), and,R, the
tube radius to mid-wall. The geometry factor causes the crack to evolve from the initial
shallow elliptical shape (a/c= 3/50= 0.06) toward a half-penny shaped crack (a/c= 1)
(which is numerically stable once achieved). This behaviorof the model is consistent
with both the present fracture surface observations and measurements made by others [9].

A shear crack grows under mode II along the surface and mode III into the depth. The
mixture of mode II and mode III at other points is a function ofthe the angle the crack
front makes with the line of shear. Conversely, a crack growing on a plane of maximum
tension is subject to only mode I loading. Thus, in the model cracks growing on planes of
maximum shear useFII andFIII , and cracks growing on planes of maximum tension use
FI .

A Through-Wall Tensile Crack Growing in a Tube
The transition from a surface crack to through crack is assumed to happen instantaneously
once the deepest portion of the crack reaches the inner wall of the tube, and at that time
it is assumed to become a through crack with the appearance shown in Figure 2b. This



λ Crack Angle
εxy
εxx

β φ β′

∞ 0◦ 45◦ 45◦

3 0◦ 52◦ 52◦

3/2 0◦ 57◦ 57◦

3/4 22.5◦ 45◦ 67.5◦

0 45◦ 45◦ 90◦

cosφc’= ccosc’= c φ

2
c

2c
’

φ

φ=π/4, β=0

Initial Shear Crack

Projected Tensile Crack

φ

β

β′= β+φ = 3π/8
φ=π/4, β=π/8

for λ=3/4for λ=∞

β′=φ

2c’

2c

β′

Figure 3. Crack length projection from shear plane onto tensile plane. (λ = 0 not
modelled)

transition presumes that the remaining uncracked materialis cracked in the last cycle to
create a through crack of length 2c. No backface correction factors were used.

The mode I stress intensity factor for an arbitrarily oriented through-crack were deter-
mined from the work of Lakshminarayana and Murthy [22]. Figure 2b shows the model
geometry, and the general form of the strain intensity equation is

∆KI(ε) =∆exxE
√

πc

[

sin2 β+
πρ2

32
(3−2cos2β−cos4β)

]

+2∆exyG
√

πc

[

sin2β+
πρ2

32
(9sin2β+2sin4β)

]

,

whereρ2 =
√

12(1−ν2)c2/(8Rt) andν is Poisson’s ratio. The crack was grown to failure
length using this model (c = 15mm).

Determining the Equivalent Tensile Crack Length
As mentioned before, the crack orientation algorithms determine whether the crack
changes from growth on a plane of maximum shear to a plane of maximum tension.
The crack length projection technique, illustrated in Figure 3 , was developed to convert
the mode II surface crack length to an equivalent mode I surface crack length. The angle
that the shear growth plane makes with the tube axis,β, is different from the angle that
the plane of tension makes with the tube axis,β′, by the angleφ. The length of the crack
after conversion to the tensile plane,c′, is related to the length of the shear crack,c, by the
amountc′ = c cosφ. This new surface crack length (c′) is used for mode I strain intensity
calculations for tensile growth. If a change is made, this new crack length is used for all
future calculations.The material’s preference for easy shear crack growth in theferrite
rich channels which run parallel to the longitudinal specimen axis [8] is reflected by the
β = 0◦ entries in the table in Figure 3 for strain ratios ofλ = 3 and 3/2.



Crack Path Algorithms
After one grain diameter (25µm) of crack growth on planes of maximum shear strain am-
plitude and every subsequent crack growth increment, the model determines whether or
not to change to growth on a plane of maximum tensile strain amplitude. This determina-
tion is made via a ratio given by the algorithms described below. The algorithms below
are derived for an elliptical crack case.

Energy Criterion
The strain energy release rate criterion, developed by Palaniswamy and then Nuismer
[23, 24], and based on fracture work by Griffith [25], posits that a crack will propagate
in the direction in which the strain energy release rate is the greatest. In general terms,
it may be expressed asGc = K2/E = (F∆σ)2πa/E = (FE∆ε)2πa/E, or, in terms of the
incremental energy released by a given crack incrementδa, it is δGc = (F∆ε)2Eπδa.
Integration ofδGc,II andδGc,III overθ leads to the total energy released per cycle under
shear crack growth,

δGs
c = 2G(Qs

ε∆es)
2π

(

(FIII )
2δas+

(FII )
2

1+ν
kδcs

)

,

where the sub/superscriptss andt indicate shear and tensile growth, respectively and∆es

is the shear strain range on the active shear crack growth plane (as per Figure 3) and takes
the value∆exy for λ ≥ 3/2 and∆e12 otherwise. Similarly, for a growing tensile crack
the incremental mode I energy released isδGt

c = E(Qt
ε∆e11)

2π
(

(Fa
I )2δat +(Fc

I )2kδct
)

,
whereFa

I andFc
I are the instantaneous mode I geometry factors in thea andc directions,

respectively. Thus in the model, the ratio of the energies isdefined asχ = δGt
c/δGs

c.

Area Criterion
The area model was an extension of an observation by Hourlierand Pineau [26] that
cracks grow in the mode in which the growth rates are highest.For the purpose of this
work the criterion was restated as; a crack will grow in the direction in which the crack
surface area increment is greatest. Thus, given different increments in thea andc direc-
tions in an elliptical crack, the area increment in crack growth is∆A= π

2(c∆a+a∆c) . The
ratio for the area criterion is thusξ = ∆At

∆As
= ct∆at+a∆ct

cs∆as+a∆cs
.

CRACK GROWTH TRANSITION PREDICTIONS

Estimates of the maximum shear crack length before changingover to crack growth on
tensile planes provided by the area and energy models are plotted in Figure 4 together
with experimental observations . In the experiments a largenumber of tests did not ex-
hibit a change from shear crack growth over to tensile crack growth. Conversely, another
significant number of tests had no post mortem observable initiating shear crack. There
were several cases where the initial shear crack changed over to crack growth on a tensile
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Figure 4. Experimental observations and predictions of maximum shear crack lengths
(before crack growth changes to maximum tensile planes). For strains which
exceed the transition strain (εt), models predict a shear crack that grows until it
spans the gage length (2c = 30mm).

plane and then back again to growth on a shear plane – in these cases it is the initial shear
crack half-length at the change in cracking mode that is plotted. With the exception of a
single test (λ = 3/2, ∆ε̄eff/2 = 0.0008) all of the tests plotted at the 50µmdetection limit
had initial shear cracks that were not detected. While the experimental data in the figure
has a significant amount of scatter, it does show that the material exhibits increasingly
longer shear cracks as shear the strain amplitude and the biaxial strain ratio increase.

Each of the two crack growth mode transition models predictsthat above a certain



effective strain amplitude, labelled in Figure 4 as the transition strain amplitude, there
will be no transition to crack growth on a tensile plane and cracks will grow to in shear.
Below the transition strain both models predict a decrease in the crack length at the tran-
sition as the strain amplitude decreases until the assumed initial crack length of 50µm
is reached. The boundaries given by the energy model fall at shorter crack lengths and
higher strain amplitudes than those given by the area model.The measured crack growth
mode transitions show a considerable amount of scatter but follow the trends predicted by
the models – the maximum shear crack length increases as the strain amplitude and the
strain ratio increase. Most of the data show a change from shear to tensile mode crack
growth at strain amplitudes and lengths greater than the boundary predicted by the area
model. The energy model on the other hand predicts a boundarythat, in crack length,
falls below almost all the data and in transition strain falls beyond the data.

FATIGUE LIFE PREDICTIONS

Fatigue life predictions are plotted together with experimental strain-life fatigue data in
Figure 5 . Curves are shown for the “tensile,” “shear,” area,and energy fatigue life pre-
dictions. The "tensile" and "shear" predictions were made with the same basic models as
the area and energy models were but had the crack growth mode confined to tensile plane
growth in the first case, and to shear plane growth in the second. The “shear” model has
an α/D value calibrated to predict the torsional fatigue limit (the same value is used by
the area/energy models – see the “shear/calibration” curve, λ = ∞). The curves for the
area and energy models almost coincide with the “shear” curve for λ = ∞ presumably
because, as was shown in Figure 4a, they predict mainly sheargrowth.

At the other extreme of the strain ratios examined was uniaxial straining, and for this
strain ratio the experimental fatigue data was produced with solid cylindrical specimens
rather than with tubular specimens. The “tensile” model employed anα/D value cal-
ibrated to the uniaxial fatigue limit with a mode I penny crack (a/c = 0.8) in a solid
cylinder (“tensile calibration” curve, Figure 5e). The “tensile” model and the area and
energy models yield good, almost identical, predictions ofthe uniaxial fatigue life data.
As shown in Figure 4e, the area and energy models predominately predict the same tensile
mode growth used as a basis for the “tensile” model.

For the stress ratios between the torsion and the uniaxial extremes (Figures 5b-d), the
“shear” model predictions improve as the strain ratio increases and, simultaneously, the
“tensile” model predictions change from conservative to unconservative. The area and
energy models predict curves that fall very close to each other for all strain ratios and
yield consistently conservative, but good, fatigue life estimates.

DISCUSSION

The large differences in the predicted maximum shear crack length between the area and
energy models appear to arise from small differences between mode I and II crack growth
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Figure 5. Life predictions made with the Area, Energy, Shearand Tensile models.

rates [12]. Because the mode I and II crack growth rates are almost equal, the differences
in fatigue lives predicted by the models using the area and energy fatigue criteria is small.
The experiments also support a hypothesis that the driving forces for shear and tensile
crack growth are almost the same since the cracks in a few of the specimens tested at each
strain ratio repeatedly alternated between growth on shearplanes and growth on tensile
planes.

Both the area and energy life gave predictions close to the observed fatigue lives.
However, the fatigue life predictions become more conservative at short lives (higher



strain amplitudes) and higher biaxial strain ratios. During the course of generating the
mode II crack growth rate data the growing shear crack occasionally bifurcated (this
became more frequent as the stress intensity range increased) and decreased the crack
growth rate significantly. Crack growth rate data obtained during the period following
crack bifurcation was eliminated from the dataset, so that the crack growth rates used to
construct the crack growth rate curves were higher than the average crack growth rates.
The consequence of using a higher crack growth rate curve is an overestimate of crack
growth rates and a correspondingly shortened fatigue life prediction.

CONCLUSIONS

Two crack growth models predicted both the crack-face interference-free fatigue life and
the maximum length of shear cracks observed in smooth tubes tested under in-phase biax-
ial loading – these models followed the growth of a crack froma shallow but long crack of
persistent slip-band depth to the failure length. The two models changed the crack growth
plane based on the strain energy release rate (energy) and the maximum crack growth rate
(area) criteria. It was determined that:

1. Both models satisfactorily predicted the fatigue life ofthe smooth tubes for the
biaxial strain ratios examined in this study (λ = εxy/εxx = ∞, 3, 3/2, 3/4, and 0):
neither predicted the life data substantially better than the other, and they both pro-
vided better predictions across the range of strain ratios than models in which all
the crack growth was assumed to be confined to either the planes of maximum shear
or planes of maximum tension.

2. Both models qualitatively predicted the maximum shear crack length trends: in-
creased strain ratio and/or increased small cycle strain amplitudes led to longer
maximum shear crack lengths.

3. The energy (strain energy release rate) model and the area(crack growth rate) model
provided reasonable estimates of the upper and lower bounds, respectively, of the
intermediate shear crack length region (50µmto 15mm).

4. The difference in the maximum shear crack length predictions at the time of mode
change between the two models and the close proximity of their respective fatigue
life predictions to each other are assumed to be the result ofalmost equal tensile
and shear mode crack growth rates.
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