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ABSTRACT.  Threshold condition and rate of fatigue crack growth appear to be 
significantly affected by the degree of deflection of cracks.  In this paper, the reduction of 
the fatigue crack growth rate for a so-called ‘periodically-kinked crack’ as compared to 
that for a straight counterpart is quantified via the Paris-Erdogan law modified 
according to some simple theoretical arguments.  It is shown that such a reduction 
increases as the value of the kinking angle increases.  Then, a so-called ‘continuously-
kinked crack’ (the kink length tends to zero) is considered and modelled as a self-similar 
invasive fractal curve.  Using the Richardson’s expression, the fractal dimension of the 
crack is expressed as a function of the kinking angle.  It is shown that the fatigue crack 
growth rate in the Paris range depends not only on the above fractal dimension and in 
turn on the kinking angle, but also on the crack length.  Some experimental results related 
to concrete and showing a crack size effect on the fatigue crack growth rate are analysed. 
 
 
INTRODUCTION 
 
During fatigue propagation, cracks in both brittle and ductile materials tend to deflect as a 
result of far-field multiaxial stresses, microstructural inhomogeneities (such as grain 
boundaries and interfaces), residual stresses and so forth. Threshold condition and rate of 
fatigue crack growth appear to be significantly affected by the degree of deflection of 
cracks.  This might be induced by the fact that the value of the near-tip Stress Intensity 
Factor (SIF) of kinked fatigue cracks can be considerably different from that of a straight 
crack of the same projected length. 

With reference to two-dimensional elastic problems, analytical solutions for SIF of 
kinked cracks are available in the literature [1,2].  Some of such results have been used to 
gain a quantitative understanding of the relation between fatigue crack growth rate and 
the degree of crack deflection in the fatigue crack path (e.g. see Ref. [3]). 

In comparison with the highly idealised picture of a straight crack, a kinked crack 
represents a first step towards the description of actual irregularities of fracture surfaces. 
A further step in that direction consists in using the fractal geometry, as has been shown 
in several publications (e.g. see Ref. [4] for a review).  Successful applications of fractal 
geometry to size effect-related fatigue problems have recently been proposed by the 
present authors [5-8]. 

In the present paper, the reduction of the fatigue crack growth rate for a ‘periodically-
kinked crack’ as compared to that for a straight counterpart is quantified via the Paris-



Erdogan law modified according to some simple theoretical arguments.  It is shown that 
such a reduction increases as the value of the kinking angle increases.  Then, a 
‘continuously-kinked crack’ (i.e. the kink length tends to zero) is considered and 
modelled as a self-similar invasive fractal curve.  The kinking angles in the crack are 
constant but the sequence of kinking directions is such that the fatigue crack path is ‘on 
average’ straight.  Using the Richardson’s expression for self-similar fractals, the fractal 
dimension of the crack is expressed as a function of the kinking angle.  It is shown that 
the fatigue crack growth rate in the Paris range depends not only on the above fractal 
dimension and in turn on the kinking angle (this behaviour being also predicted by the 
periodically-kinked crack model), but also on the crack length.  Finally, some 
experimental results related to concrete and showing a crack size effect on the fatigue 
crack growth rate are analysed. 
 
 
SIF AND CRACK GROWTH RATE FOR A PERIODICALLY-KINKED CRACK 
 
SIF for a kinked crack 
Let us consider the linear elastic two-dimensional problem of the kinked crack in Fig. 1. 
The loading axis is taken to be perpendicular to the projected crack length l so that the 
projected straight crack would be submitted to a Mode I loading characterised by the SIF 

IK  (e.g. for a centrally-cracked infinite plate: ( )2lKI πσ= ).  The local Mode I and 
Mode II SIFs, Ik  and IIk , at the crack tips A and C can be expressed as a function of the 
SIF IK , the kinking angle ϑ  and the ratio ab  [1,2].  Excluding the case of an 
infinitesimal kink ( 0→ab ), the local SIFs at the crack tip C are approximately equal to 
those of an inclined straight crack of projected length l forming an angle ϑπ −2  with 
respect to the loading axis [1], namely: 
 

 
Figure 1 – Nomenclature for the kinked crack. 
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ICI Kk ⋅= ϑ23
, cos , ICII Kk ⋅⋅= ϑϑ 21

, cossin    (1) 
 

On the other hand, for any value of ϑ  and for 2<ab , the local SIFs at the crack tip 
A are approximately equal to those of the projected straight crack of length l [1], namely: 

IAI Kk =, ,  0, =AIIk      (2) 
 
 
Crack growth rate for a periodically-kinked crack 
Let us assume that the kinked crack in Fig.1 nominally propagates under fatigue Mode I 
loading with SIF IK  (the loading axis is perpendicular to the projected crack length) 
following the path described in Fig. 2, from left to right (from point A to point E and so 
on).  Such a deflected crack is here termed ‘periodically-kinked crack’.  The crack path is 
characterised by straight segments of length a  and by deflected segments of length b . 
The degree of kinking in two successive segments is the same although the deflections 
occur in opposite directions so that the overall (‘average’) propagation direction is along 
the Mode I plane.  The deflection behaviour is periodic with the repeated pattern 
described by the crack path ABC (the repeated growth distance ba +  is understood to be 
much smaller than the total projected length of the crack). 
 

 
Figure 2 - Nomenclature for the periodically-kinked crack. 

 
 

By assuming that, as the crack propagates following the periodic path in Fig. 2, only 
the latter deflection of the crack path influences the stress field near the right-hand crack 
tip (e.g. along the straight segment CD only the deflection C but not the deflection B has 
an influence) and that a  is equal to b , the local SIFs at the right-hand tip can be 
calculated approximately according to Eqs 2 for straight (Mode I) segments (the segments 
AB and CD in Fig. 2) and to Eqs 1 for deflected (Mode I+II) segments (the segments BC 
and DE in Fig.2). 
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Along the deflected segments, an effective driving force can be determined by 
applying the coplanar strain energy release rate theory.  Accordingly,  the effective SIF 

effk  is given by: 
22
IIIeff kkk +=      (3a) 

and, by using Eq. 1, we obtain: 

Ieff Kk ϑcos=      (3b) 

Now let us apply the Paris-Erdogan law to the periodically-kinked crack: 
m
IKC

dN
ds

∆=      (4) 

where dNds  = crack growth rate for the kinked crack (s = linear-piecewise coordinate 
along the kinked-crack path); IK∆  = mean value of the Stress Intensity (SI) range for the 
kinked crack. 

The value of IK∆  is represented by the weighted average of the Mode I SI range IK∆  
along the straight segments and of the effective SI range effk∆  (see Eq. 3b in terms of SI 
ranges) along the deflected segments [3], that is  
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and, since ba = , we obtain: 

2
cos1 ϑ+

∆=∆ II KK     (5b) 

Considering the fact that, when the kinked crack spans a distance ba + , the projected 
straight crack spans a distance ϑcosba + , the following relationship between the crack 
growth rate for the kinked crack ( dNds ) and that for the projected straight crack 
( dNdl ) holds : 

dN
dl
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ϑcos+
+
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and, since ba = , we obtain: 
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dl
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By substituting Eqs 5b and 6b in Eq. 4, the following fatigue crack growth law in 
terms of the nominal quantities dNdl  and IK∆  is determined: 

( )( )( ) m
I

mm KC
dN
dl

∆



 ++= +− ϑϑ cos1cos12 1    (7) 

The modified expression of the Paris-Erdogan law proposed in Eq. 7 takes into account 
the influence of the degree of kinking on the fatigue crack growth rate.  In particular, it is 
shown that, at equal IK∆  values, the crack growth rate dNdl  decreases as the value of 
the kinking angle increases. 



 
SIF AND CRACK GROWTH RATE FOR A CONTINUOUSLY-KINKED CRACK 
 
Self-similarity of a continuously-kinked crack 
Conversely to a Euclidean curve which has the integer physical dimension 1L , a 
mathematical self-similar invasive fractal curve is a geometric object characterised by a 
non-integer dimension (the so-called ‘fractal dimension D ’, with 21 ≤≤ D ), and by an 
invariance in its morphology at different scales of observation (the so-called “self-
similarity”) or, in other words, at different steps in the fractal generation procedure [9]. 

The model of the periodically-kinked crack shown in Fig. 2 can be extended to the 
fractal geometry by considering the generation procedure sketched in Fig. 3 (the crack is 
assumed to be fractal along its length and smooth along its tip).  Accordingly, the straight 
segment 0E  of length l2  (initiator) is replaced by the linear-piecewise curve 1E  
representing the generator for the fractal curve under consideration (the generator 1E  is 
described by the curve ABCDE in Fig. 2, with ba = ).  Then the generator and its 180° 
clockwise rotation are used to replace, respectively, the first and third segments and the 
second and fourth segments of 1E  in order to obtain the curve 2E , and so forth for the 
successive steps (the fractal curve is determined after an infinite number of steps).  The 
obtained fractal curve describing the crack (here termed “continuously-kinked crack”) is 
characterised by linear segments of length tending to zero and by a constant degree of 
kinking in two successive segments. 
 
 

 
 
 

Figure 3  –  Fractal generation procedure for the continuously-kinked crack. 
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At the n-th scale of observation, the measured crack length, e.g. using the ‘yardstick’ 
method, is equal to ns , so that the measured length 0s  of the fractal crack at the 0-th scale 
of observation is equal to its projected length l2 .  For mathematical fractals, the 
following fundamental relationship (Richardson’s expression, see Ref. [9]) holds at any 
scale of observation: 

=⋅ D
nnN ε  constant     (8) 

where nε  = length of the linear ‘yardstick’ at the n-th scale of observation of the fractal; 

nN  = number of linear ‘yardsticks’ of length nε  ( nnn Ns ε⋅=  is the measured length of 
the fractal at the n-th scale of observation).  Obviously, for natural fractals, Equation 8 
holds only within a limited range of scale, with the lower bound generally associated to 
the characteristic size of the material microstructure and the upper bound associated to the 
finite size of the structural component. 

Considering the 0th step and the 1st step in the generation of the continuously-kinked 
crack in Fig. 3,  we can obtain (according to Eq. 8) : 

DD as ⋅=⋅ 41 0      (9) 
where ( )ϑcos2220 +== als , and hence the fractal dimension D  is given by: 

( )ϑcos22ln
4ln

+
=D     (10) 

Note that D  is equal to the unity (Euclidean curve) for 0=ϑ ° (straight crack), whereas 
D  is equal to 2 (Euclidean surface) for the limit case of °= 90ϑ . 
 
 
SIF for a continuously-kinked crack 
From a reconsideration of the energetic approach of Griffith, it has been demonstrated 
that the SIF for a fractal crack is represented by the following renormalized quantity *

IK  
(e.g. see Ref. [6]) 

2
1

*
D

II lKK
−

=      (11) 
The physical dimensions of *

IK  are dependent on the fractal dimension D, and are equal 

to 2
2 D

LF
+

−
⋅ .  Note that a fractal extension of a kinked crack similar to that here proposed 

was presented in Ref. [10], but the related SIF was defined within the framework of 
Linear Elastic Fracture Mechanics (e.g. the physical dimensions of SIF were the classical 

ones, i.e. 2
3

−
⋅ LF ). 

 
 
Crack growth rate for a continuously-kinked crack 
According to Ref. [6], the following modified Paris-Erdogan law can be used to describe 
the fatigue crack growth for the continuously-kinked (fractal) crack: 



( )m
IKC

dN
dl **

*
∆=      (12) 

where *l  is the renormalized crack length having physical dimensions DL , while the 

material parameter *C  has the following dimensions: 2
32

1
D

LF
+

− ⋅ . 
Since Dll =* , the derivation chain rule yields a relationship between the renormalized 

fatigue crack growth dNdl*  and its nominal counterpart dNdl , namely 
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By substituting Eqs 11 and 13 in Eq. 12,  the following fatigue crack growth law in 

terms of the nominal quantities dNdl  and IK∆  can be obtained : 
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Note that, conversely to the fatigue crack growth law in Eq. 7 for periodically-kinked 
cracks, Equation 14  for continuously-kinked cracks explicitly depends on the crack 
length l  and, hence, it accounts for crack size effects on the fatigue crack growth rate. 
 
 
COMPARISON WITH EXPERIMENT AND DISCUSSION 
 
It is instructive to consider here some experimental fatigue crack growth results 
exhibiting crack size effects, since such results might be regarded as a counter-example 
for the validity of the crack growth law in Eq. 7.  The experimental data are related to 
fatigue crack propagation in three-point bend high-strength plain-concrete specimens 
[11].  One series of three two-dimensional geometrically similar cracked beams (A, B and 
C) with height equal to hA = 38 mm, hB = 108 mm and hC = 304 mm, initial length of the 
crack of 0.16h (lA = 6.3 mm, lB = 18.0 mm and lC = 50.4 mm), span of 2.5h and thickness 
of 38 mm was tested.  The maximum size of the aggregate was equal to 9.5 mm and the 
mean compression strength was equal to 90.3 MPa. 

The nominal values of the crack growth rate against SI range [11] are reported as a 
bilogarithmic plot in Fig. 4 (17, 16 and 12 experimental points for beams A, B and C, 
respectively).  The value of the fractal dimension D can be calculated by applying Eq. 14 
to the data in Fig. 4 through a best-fit procedure (see Ref. [6] for details).  It turns out that 
the fractal dimension D is equal to 1.27 (being the slope of the Paris-Erdogan law m  = 
8.2) and hence, by applying Eq. 10, the kinking angle ϑ  results to be equal to 54°.  The 
value of ϑ  is deemed to be correlated to the material microstructure, but further work is 
needed in order to determine quantitative relationships. 
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Figure 4 - Crack growth IKNl ∆−dd  data for different values of initial crack length [11].  
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