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ABSTRACT   The use of the crack tip stress intensity factor, K, has survived almost 50 
years as the key parameter correlating fatigue crack growth. As time past the range of 
the stress intensity, ∆K , was recognized as causing alternating plasticity at the crack 
tip. The threshold level for ∆K was discovered. Further the occurrence of crack closure 
was noted which effected the ∆K for different load ratios, R, of cyclic loading. The 
ASTM method of counting the linear part of the load displacement for determining 
∆Kopen was found to understate the ∆Keffective , which  correlates data for different 
load ratios. One approach to adjust for this problem is the “Partial Closure Model”, 
where the closure only occurs away from the crack tip. Here it will be discussed that 
such a model leads to a universal growth law. Moreover, this law shows application in 
estimating the order of magnitude of crack growth life (>107cycles) for example with 
very high cycle fatigue (>109cycles). Some advances in this application will also be 
cited. 

 
 

INTRODUCTION 
 
The use of the elastic crack tip stress intensity factor, K, was submitted for publication 
in 1959 [1] and was promptly rejected by 3 major journals (ASME, AIAA and a UK 
journal). In all three cases the reviewers argued that an elastic parameter could not 
correlate fatigue crack growth data because plasticity must be involved.  Figure 1 shows 
the original plots of data from three independent sources on 2 aluminum alloys showing 
the correlation of data ignored by those reviewers.  Further discussion appears in a 
subsequent paper [2], comparing earlier suggested parameters based on more limited 
data. The wide range of data provided by McEvily [3] settled this search for K as the 
leading parameter of interest. It is acknowledged that McEvily introduced a stress 
concentration type parameter, which was a less popular but correct approach. 
 



 
Figure 1 The original 1959 correlation of data on 2024 and 7075 aluminum alloys [1]. 

 
 

In this later paper [3] the power law of crack growth was presented in terms of the 
range of the stress intensity, ∆K , with a constant, C, dependant on the load ratio, R, to 
express the growth rate as: 

 
da
dN

= C ∆K( )n         where      C=C(R) 

 
This form was merely an empirical fit of McEvily’s data over a wide range of growth 

rates (5+ log cycles). It was observed by Hertzberg that this law failed at rates below 
one Burger’s vector, b, per cycle by leveling to a threshold ∆K  (private  communication 
1964). Even earlier Anderson [4] noted that growth rates were similar for all metal 
alloys if the stress intensity range was normalized by dividing by elastic modulus, E. 

It was later in the 1960’s that Elber [5] drew attention to crack closure in fatigue, 
although closure was noted by Christensen [6] much earlier. Thereafter, [7] Hertzberg 
noticed that for load ratios, R, above 0.7, where no closure occurs, that the preceding 
law herein can be made universal for all metal alloys as: 

 

da
dN

= b ∆K
E b

 
 
 

 
 
 

n

 where n = 3 and threshold occurs for 
∆K

E b
=1 

 
Indeed this empirical law works for a wide variety of steels; aluminum, titanium, 

magnesium, and copper-beryllium alloys [7]. It remains to develop this law to an even 
more universal form by finding a ∆Keffective  so that it may be applied to all load ratios, 
R, by including the effects of crack closure. 
 



THE SEARCH FOR ∆Keffective  WITH CRACK CLOSURE PRESENT 
 
There is no analytical method of calculating the crack closure (or opening) level during 
cyclic loading. For variable amplitude there is also no method. The ASTM has tried to 
develop a method (see ASTM E 647-00) of measuring the opening load by determining 
the load level for which the load displacement record becomes linear as the crack peals 
open. Data in terms of load vs. displacement is analyzed to obtain the point at which the 
deviation from subsequent linearity is a certain small % of that slope. This load is used 
to compute Kopening , which along with the maximum load for Kmax , is used to 
compute a stress intensity range as: 
 

∆Kopen = Kmax − Kopen  
 

This was at one time regarded as the relevant ∆K causing fatigue crack growth. 
However, precise computer controlled load-displacement data from Donald [8] covers a 
wide range of load ratios, R. It shows that the ASTM method does not well correlate the 
data of widely differing load ratios. It improves correlation at high stress intensities but 
worsens correlation near threshold. This effect is shown on Figures 2 and 3. Donald [9]  
 

 
 

Figure 2 Data on 7055 aluminum alloy using applied stress intensity range, ∆K , [10]. 
 

proposed the “Adjusted Compliance Ratio Method” and also noted [10] a minor effect 
of Kmax  in the data. See Figures 4 and 5. After several years of consideration there is 
no known model or theory to justify this ACR method. On the other hand the “Partial 
Closure Model” [11] will be revisited here, which does have a physical and analytical 



basis. With it we shall show that the preceding normalized power law can be made 
universal for all load ratios. 

 

 
 

Figure 3 Data on 7055 using the ASTM ∆Kopening  method, [10]. 
 
 

 
 

Figure 4 Data on 7055 using Donald’s Adjusted Compliance ∆KACR  method, [10]. 



 
 

Figure 5 Data on 7055 using ∆KACR  and with Donald’s adjustment for Kmax , [10]. 
 
 

THE PARTIAL CLOSURE MODEL FOR ∆Keffective  
 
The doctoral dissertation of Bowles [12] noticed that with cyclic fatigue crack closure a 
region near the crack tip stays open at minimum load. Whether closure is due to 
plasticity, asperities on the surface, or fragments etc it can be modeled as a rigid layer of 
height, 2h,  extending into the crack a distance, d, from the tip. Figure 6 shows the  
 

 
 

Figure 6 The computational model for the partial closure method [11]. 



 
model for (a) minimum load and (b) at opening load when crack closure occurs. For the 
condition at full unloading, (a), the crack tip stress intensity is found to be: 
 

Keff −min =
Eh
2πd

+ σ nom−min
πd
2  

 
For (b) at opening load the stress intensity is: 
 

Kopen =
Eh
2

π
2d  

Combining these gives: 
 

Keff −min =
2
π

Kopen + σ nom−min
πd
2  

 
Where σ nom−min  is  the nominal tensile stress perpendicular to the crack with the 

crack absent. Since the term is quite small because d is also small, it can be neglected. 
Consequently it is seen that the minimum effective stress intensity is very nearly: 

 

Keff −min ≅
2
π

Kopen  

 
As follows from this we have called this the “Partial Closure Model” or 2/Pi0 – method 
where the effective stress intensity range is: 
 

∆Keffective = Kmax − Keff −min ≅ Kmax −
2
π

Kopen  

 
This implies that the ASTM opening stress intensity should be reduced by 

approximately 2 π  to correctly compute the real stress intensity range. Figure 7 shows 
the same preceding data of Donald from Figures 2, 3, 4, and 5 where the data is 
correlated quite closely into a single curve. Though this is data on a single material the 
reader will find many other materials with comparative correlations in the references 
cited herein. 

 
 



 
 

Figure 7 Data on 7055 using the partial closure model (2/Pi0) ∆Keff . 
 
 

The Partial Closure Model is emphasized here with some reservation. All physical 
models are crude approximations of reality and this one is no exception. However it 
happens to helpfully correlate data for considerations of whether the data is well 
founded and whether the material is not an oddity. The ACR method of Donald serves 
this same purpose in general. At least for one material he has tested, Donald has 
acknowledged (private communication) that the Partial Closure Model provides tighter 
correlation. The disadvantage of both of these models is that closure load levels must be 
measured experimentally, which make the data difficult to use in practical applications 
to life prediction. In any case these correlations do help to show that ∆K  as modified 
for closure is the primary and dominant variable causing fatigue cracking. 

It is of further interest to also revisit the preceding cubic power law using the 
effective stress intensity range developed here. 
 
 
THE UNIVERSAL LAW OF MECHANICAL FATIGUE CRACK GROWTH 
 
In order to make the previous third power law herein into a universal law for all load 
ratios, R, it is only necessary to substitute the effective stress intensity factor. It is 
acknowledge that a small effect of the maximum stress intensity factor is present, as 
illustrated in Figure 5. Since this effect is minor it shall be ignored in further discussion. 



Consequently, the “Universal Law” is stated as: 
 

                 
da
dN

≅ b
∆Keff

E b
 

 
 

 

 
 

3

where for threshold  
da
dN

≤ b   and  
∆Keff

E b
≅1 

 
This Universal Law is a good approximation for all data on metal alloys known to 

these authors but is only an approximation. Figure 8 shows the results of the plotted 
lines of the law as compared to data 7055 aluminum (a very good fit) and for 2324 
aluminum (a good fit except this alloy exhibits a superior threshold or larger Burger’s 
vector). These are extremes in the precision of fit and again the reader will find further 
supporting evidence in the references herein, especially [7]. The Universal Law is 
suggested to provide a maximum growth rate limit for data not influenced by aggressive 
environments. It applies equally well to “small cracks” as a maximum growth rate. As 
such it  can be used in estimates of minimum and order of magnitude estimates of crack 
growth lives for many applications. 
 
 

  

 
Figure 8 Data on both 7055 and 2324 with predicted lines from the Universal Law. 

 
For example in a series of applications to Very High Cycle Fatigue, >108 cycles, 

exhibiting failure initiation from internal metallurgical discontinuities, this law can be 
used to show that the accompanying crack growth life is much smaller, <106 cycles. 
Therefore, VHCF life is dominated by initiation of cracking, see [13-17].  
 
Dimensional Considerations of the Universal Law 
 
The immediately above power law is noted to be dimensionally correct. If only the 
effective stress intensity range, the maximum stress intensity, the elastic modulus, and 
the Burger’s vector are present in the growth rate law, then the non-dimensional 



parameters involve are: dN , da
b

, 
∆Keff

E b
. and Kmax

E b
. Restricting the parameters to these 

items is strongly supported by the preceding data. A general form of the law can then be 
written as: 
 

da
dN

= b ⋅ F
∆Keff

E b
, Kmax

E b
 

 
 

 

 
  

 
It is acknowledged that b could be a micro-structural characteristic of the material of the 
order of the Burger’s vector (such as micro-constituent phase size, etc.). However the 
Universal Law applied to data in all cases strongly supports the third power effect, i.e. a 

growth rate proportional to 
∆Keff

E b
 

 
 

 

 
 

3

.  As a consequence the law becomes: 

 

da
dN

= b
∆Keff

E b
 

 
 

 

 
 

3

⋅ F1
Kmax

E b
 
 
 

 
 
  

 

Donald [10] in his work chooses: F1
Kmax

E b
 
 
 

 
 
 = A ⋅

Kmax

E b
 
 
 

 
 
 

m

 ,  (with m = 1) in an attempt 

to fit the data even better and where A is a non-dimensional constant. This choice might 
be subject to further investigation. However, with that choice the law becomes: 
 

da
dN

= A ⋅ b
∆Keff

E b
 

 
 

 

 
 

3

⋅
Kmax

E b

 

 
 

 

 
 

m

 

 
where threshold occurs at: 
 

F
∆Keff

E b
, Kmax

E b
 

 
 

 

 
 = B  

 
and where B is also a dimensionless constant.  

It is noted that the Universal Law as previously stated above is within the restrictions 
of these dimensional considerations. Other attempts to formulate laws of mechanical 
fatigue crack growth incorporating other factors (such as yield stress, etc.) are contrary 
to the broad trends of data used in implying and developing the Universal Law through 
the analysis here. 



It remains for someone to give a full physical explanation of the fact that stress 
intensity divided by elastic modulus times square root of Burger’s vector is show by all 
the data on metal alloys to be the universal normalizing factor. Further, the influence of 
environment remains another effect requiring attention as well. 
 
 
CONCLUSIONS 
 

(1) The power law of stress intensity factor range, ∆K , has withstood almost 50   
years of exploration and remains the most dominant parameter causing fatigue 
crack growth. 

(2) Crack closure effects the stress intensity range. 
(3) The ASTM method of determining open load and thereby ∆Kopen  does not 

adequately express the full stress intensity range with closure. 
(4) Following the work of Bowles, the Partial Closure Model shows a ∆Keff  greater 

than the ASTM method. Donald’s ACR method also correlates data better but 
lacks an analytical model’s justification. 

(5) All fatigue crack growth data strongly show that dividing the stress intensity by 
elastic modulus times square root of Burger’s vector normalizes that data. 

(6) From the previous conclusions a Universal Power Law of mechanical fatigue 
crack growth for all metal alloys has been reviewed and presented herein. 

(7) This Universal Law may be affected in a minor way by the maximum applied 
stress intensity and sometimes in major ways by environmental influences. 

(8) Applications of this Universal Law are only good for order of magnitude 
estimates of minimum crack growth lives (for example for very high cycle 
fatigue  >108 applications). 
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