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Sommario

Si utilizza un modello di crack coesivo per l'analisi della
stabilitd di fessure in materiali elasto-softening. La for-
ma della curva di risposta carico-spostamento varia notevol
mente al variare della scala dimensionale e mantenendo inva
riata la forma geometrica della struttura. Il ramo discen-
dente diviene sempre pili ripido all'aumentare della scala
dimensionale. Esiste poi una dimensione critica per cui la
pendenza del ramo discendente & infinita.

In questo caso la capacitd di carico diminuisce drasticamen
te per incrementi di deformazione relativamente piccoli.Per
dimensioni maggiori, quindi, la pendenza diventa positiva e
appare una cuspide nella curva carico-spostamento.

Si dimostra che tale punto di biforcazione pud essere rive-
lato dalla ben nota condizione di meccanica della frattura

elastica lineare: Ky = Kjyc.
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ABSTRACT

A cohesive crack model is applied to analyze the crack stability in elastic-
softening materials. The shape of the global load-displacement response changes
substantially by varying size-scale and keeping geometrical shape of the structure
unchanged. The softening branch becomes steeper and steeper when the size-scale
increases. A critical size-scale does exist for which the softening slope is infi-
nite. In such a case, the lecad carrying capacity drastically decreases for relative
ly small displacement increments. Then, for larger size-scales, the softening -
slope becomes positive and =2 cusp catastrophe appears. It is proved that such a
bifurcation point can be revealed by the simple LEFM condition KI = KIC'
INTRODUCTION

The Catastrophe Theory was applied by Thompson and Shorrock [ 1] to demon-—

strate the existence of a cusp catastrophe in a symmetry-breaking instability of

a close packed atomic lattice. This work was then extended to demonstrate the ex-
istence of the more complex hyperbolic umbilic catastrophe in a three-dimensional
failure stress-locus [2 ]. “ore recently, Potier-Ferry [3} gave an interpretation
of the Linear Elastic Fracture !Mechanics instability in terms of Catastrophe Theory.
An attempt is made in this paper to explain the transition from ductile to brittle
behaviour when the structure size increases, based on the elementary concepts of
Thom's Theory [4 |. For relatively large structure sizes, catastrophic jumps may
occur when a smooth variaticn of control variable {(displacement) causes a discon-
tinuous change of behaviour wvariable (load). For relatively small structure sizes,

such jumps are not predicted.

A cohesive crack model is applied to analyze the docal or slow crack growth
in elastic-softening materials. The shape of the globad load-displacement responsa

changes substantially by varying size-scale and keeping geometrical shape of the
structure unchanged. The softening branch becomes steeper and steeper when the sizc-

o
>

scale increases. A critical size-scale does exist for which the softening slope 1
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infinite. In such a case the load carrying capacity drastically decreases for re-
latively small displacement increments. Then, for size-scales larger than the cri-
tical one, the softening slope becomes positive and part of the load-displacement
path results to be virtual if the loading process is displacement-controlled. In
such a case, the loading capacity will present a discontinuity with a negative
Jump. The size-scale transition from ductile to brittle behaviour is governed by

a nondimensional brittleness number s_ which is a function of material properties
and structure size-scale. A truly brittle failure occurs only with relatively low
fracture toughnesses, §_ , high tensile strengths, o , and/or large structure size-

scales, b, i.e., whens_ =6 /o b ~» O. Y
E IC u

On the other hand, if the loading process is controlled by a monotonically in-
creasing function of time (e.g., the crack mouth opening displacement or a linear
combination of load and displacement), the indentation in the load-displacement
curve can be captured experimentally. When the post-peak behaviour is kept under
control up to the complete structure separation, the area delimited by load-displace
ment curve and displacement-axis represents the product of gIC by the initial 1li-

gament area.

Eventually, it is proved that, for s_ + 0, the maximum load of catastrophical
failure may be provided by the simple LEFM condition: K_ = K 8 = gIC E (plane
stress), and that slow crack growth and process zone are laﬁ&ing before the cata-

strophical event.
COHESIVE CRACK MODELLING

The cohesive crack model is based on the following assumptions [5- 8] .
(1) The cohesive fracture zone (plastic or process zone) bsgins to develop when the
maximum principal stress achieves the ultimate tensile strength o (Figure 1-a).
(2) The material in the process zone is partially damaged ut still able to transfer

stress. Such a stress is dependent on the crack opening displacement « (Figure 1-b).

The neal crack tip is defined as the point where the distance between the crack
surfaces is equal to the critical value of crack opening displacement W and the nor
mal stress vanishes (Figure 2-a). On the other hand, the fictifiovws crack Xip is de-

fined as the point where the normal stress attains the mzximum value 2 and the crack

opening vanishes (Figure 2-a}.

The closing stresses acting on the crack surfaces (Figure 2-a) can be replaced
by nodal forces (Figure 2-b). The intensity of these forces depends on the opening
of the fictitious crack, w, according to the O —w constitutive law of the material
(Figure 1-b). When the tensile strength o, is achieved at the fictitious crack tip
(Figure 2-b), the top node is opened and a cohesive force starts acting across the

crack, while the fictitious crack tip moves to the next noie.

With reference to the three point bending test (TPBT) geometry in Figure 3, the
nodes are distributed along the potential fracture line., It is impossible to extend
the fracture ncdes to the whole cross-section depth, as would be required to follow
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in the finite element mesh (b).
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since a sufficiently large
A ligament equal to

the fracture process up to the complete load relaxation,
ligament is needed to guarantee a correct structural analysis.
one tenth of the depth (b/10) is assumed.

The coefficients of influence in terms of node openings and deflection are com-
puted by a finite element analysis where the fictitious structure in Figure 3 is sub
jected to (n+1) different loading conditions. Consider the TPBT in Figure 4-a with
the initial crack tip in the node k. The crack opening displacements at the n frac-

ture nodes may be expressed as follows:

w=KFa+CP+ I | (1)

¥ Ly P 2 N "
being:

i:: vector of the crack opening displacements,

K = matrix of the coefficients of influence (nodal forces),

5"

E = vector of the nodal forces,

C = vector of the coefficients of influence (external load),

.

P = external load,

I = vector of the crack opening displacements due to the specimen weight.

4%

On the other hand, the initial crack is stress—free and therefore:

Fo=0, for i =1,2,..., (k-1), (28l
while at the ligament there is no displacement discontinuity:

w. =0 , for i =k, (k+1),..., n (2-b)

Equations (1) and (2) constitute a linear algebraical system of 2 n equations and
2 n unknowns, the elements of vectorseﬁ and { . If load P and vector E are known,

it is possible to compute the beam deflection, 6 :

i.e.

§=CTF+D,P4+D , (3)
N Y

P

is the deflection due to the specimen

where DP is the deflection for P 1 and DY

welight.

After the first step, a cohesive zone forms in front of the real crack tip

(Figure 4-b), say between nodes j and 1. Then equations (2) are replaced by:
F, =0, for 1.=0.1, 2 ecay, (3 =21) (4-a)
Fy = Fyf1- %i\, fori=3j, (j+1), ...,1 , (4-b)
w
e o=l for i =1, (1+1), ..., n, (4-c)
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where Fu is the ultimate strength nodal force:

F, = 0.9 bo,/n . (5)

Equations (1) and (4) constitute a linear algebraical system of (2n + 1) equations
and (2n + 1) unknowns, i.e. the elements of vectors f and E and the external load P.

At the first step, the cohesive zone is missing (1 =j = k) and the load P; pro
ducing the ultimate strength nodal force F, at the initial crack tip (node k) is com
puted. Such a value Pj, together with the related deflection §; computed through
equation (3), gives the first point of the P - § curve. At the second step the cohe-
sive zone is between the nodes k and (k + 1), and the load P, producing the force Fy
at the second fictitious crack tip (node k +1) is computed. Equation (3) then pro-
vides the deflection 62. At the third step, the fictitious crack tip is in the node
(k +2), and so on. The present numerical program simulates a loading process where
the controlling parameter is the fictitious crack depth. On the other hand, real (or
stress—free) crack depth, external load and deflection are obtained at each step

after an iterative procedure.

The program stops with the untieing of the node n and, consequently, with the
determination of the last couple of values Fn and 6 ;. In this way, the complete
load-deflection curve is automatically plotted by the computer.

SIZE-SCALE TRANSITION FROM DUCTILE TO CATASTROPHICAL FAILURE

Let us consider a cracked beam in flexure with the span, 1, equal to four times
the beam depth, b,r(Figure S-a). Such sizes will be scaled with geometrical similitude,
whereas the beam thickness will be kept constant, t = 10 cm. The initial crack depth,
ay/b, will range between 0.0 (initially uncracked beam) and 0.5. The mechanical pro-
perties are those thypical of a concrete-like material:

Young's modulus, E = 400 000 kg/cmg,
Ultimate tensile strength, o = 40 kg/cm@ ,
Critical crack opening displacement, & . = 0.005 cm .

The area under the ¢ vs.® curve in Figure 1-b is the strain energy release rate
— w —_
c=109,% =0.1 kg/cm.
2

For the size-scale parameter b = 10 cm,
in Figure 6-a by varying the initial crack depth, aO/b. For deep cracks, stiffness
and loading capacity decrease, whereas ductility increases. The slope of the soften-
ing branch achieves its maximum when the beam is initially uncracked.

the load-deflection curves are reported

The load-deflection curves in Figure 6-b relate to the case b = 20 cm. The gen-

eral trend by varying the geometrical ratio aD/b is the same as in Figure 6-a. In
= 0 is nearly infinite and

this case, however, the maximum softening slope for ao/b
=12 x 10_3 cm.

a drop in the load carrying capacity is predicted when &
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The case b = 40 cm is described in Figure 6-c. For ao/b £ 0.20, the softening
slope presents even positive values with an indenting shape of the P- &6 curve. If
the loading process is deflection-controlled, the load will present a discontinuity
with a negative jump. Substantially, this is the case of a cusp catastrophe.

The case b = 80 cm is eventually contemplated in Figure 6-d. The cusp cata-
strophe occurs for aO/b £ 0.25. That is, when the size-scale increases, the initial

crack depth interval of cusp catastrophe spreads.

The opposite trends of brittleness increase by increasing size-scale and/or de-
creasing initial crack depth, are shown schematically in Figure 5-b. The gradual
transition from simple fold catastrophe to bifurcation or cusp catastrophe generates
an equilibrium surface (or catastrophe manifold).

The maximum loading capacity p(1) according to the cohesive crack model is ob-
max
tained from the P - § diagrams in Figures 6. On the other hand, the maximum locad P{z)

according to LEFM can be derived from the following formula [9] : max
; 3/2
K _tb
p(2) _ “rc . (6)
faR
1f (ap/b)

with the shape-function f given by:

1/2 3/2 5/2 7/2 3/2
f(@ = 2.9 (a_o 246 2o /2, 21.8 %o - 37.6f 20 +38.7(%) , (7)
b b b b b b

ard the critical value of stress-intensity factor KIC computed according to the well-

known relationship:

= E . (8
SI )

The values of the ratio P(l) / P(2) are reported as functions of the dimension-
less size, bo /gIC , 1OF equivgféntlyﬂaxof the brittleness number, sg = 51c loyb
[10-14] in Fféure 7. The ratio P(l) /P(2] may also be regarded as the ratio of the
fictitious fracture toughness (giggg bjmyﬁe non-linear maximum load) to the true

fracture toughness (considered as a material constant).

Tt is evident that, for low sy values, the results of the cchesive crack model
tend to those of LEFM [13]

lim P( =
max max

1) P(e) ' (9)

SE“‘O

and, therefore, the maximum loading capacity can be predicted applying the simple

condition K_ = K_ .
I IC

The fictitious crack depth at the maximum load is plotted as a function of the

inverse of brittleness number s_. in Figures 8. The brittleness increase for sg + 0

E
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is evident also from these diagrams, the process zone at dP/dé = O tending to dis-
appear, whereas it tends to cover the whole ligament for sg + w (ductile collapse).
The real (or stress—free) crack depth at the maximum load is nearly coincident with
the initial crack depth for each value of sp. This means that the slow crack growth
does not start before the softening stage. Therefore, neither the slow crack growth
occurs nor the cohesive zone develops before the peak, when sgp - O(').

Recalling once again Figures 7 and 8, it is possible to state that, the smaller
the brittleness number s_ is, i.e., the lower the fracture toughness gIC' the larger
the size-scale b and/or the higher the ultimate tensile strength o, the more accu-
rate the cusp catastrophe is in reproducing the classical LEFM instability (13].

FRACTURE ENERGY DISSIPATION AND BRITTLENESS LIMIT FOR INFINITE SIZE-SCALE

If the loading process is controlled by a monotonically increasing function of
time, like, for instance, the crack mouth opening displacement [13 ] or the linear
combination of load and displacement ( §cos € — P sin &), where 6 represents a rota-
tion of the control plane 6 versus b about the b-axis [ 15] , the indentation or
virtual branch of the load-displacement curve can be captured experimentally. When
the post-peak behaviour is kept under control up to the complete structure separa-
tion, the area delimited by load-displacement curve and displacement-axis represents
the product of strain energy release rate, gIC‘ by the initial ligament area, (b -ag) t,
(Figures 9). The area under the curve a_ /b = 0.0 is thus twice that under the curve
ao/b = 0.5 in Figure 6-a, as well as the half of that under the curve ag/b = 0.0 in
Figure 6-b, etc. This simple result is due to the assumption that energy dissipation
occcurs only on the fracture surface, while in reality energy is also dissipated in
a2 damage volume around the crack tip, as shown by Carpinteri and Sih in [16] . On
the other hand, the cohesive crack assumption is more than acceptable for slender
beams, where bending prevails over shear and the energy dissipation occurs in a very

narrow crack band [17]

When the brittleness number s_ - O, p(1) - p(2) and equations (6) and (8) pro-
5 E max max
vide:
G -p2  (1/5)° 12 (ag/b) . (10)
Ic max b2 E

In a three point bending specimen of linear elastic material the deflecticn is given
by the contribution of a distributed and a concentrated compliance respectively:

6= _p 1(1)3+§_ i?g(@) : (11)
Et 4 \b 2 \b b

(*) Slow crack growth and cohesive zone may develop only if both load and displace-
ment are decreased, following the virtual branch with positive slope. On the
other hand, with normal softening (i.e., only negative slope in the P - 6§ curve
after the peak) only the load must be decreased to control the fracture process.
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Fig. (2) - Energy dissipated in the fracturing process.
Ductile (a) and brittle (b) behaviour.
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in the body at the bifurcation point to energy dissipated in the fracturing
process. Initially cracked (a) and uncracked (b) specimen.



where [18 ]:

2 2 3 4
g(%) = [2o/b {5.58—19.57 o) + 36.82 (3 - 34.94[a0\ + 12.77( % . (12)
b/ 1-3a0 b b b b

b

Relation (11) is valid also for the point of instability, and then equation (10) is

transformed as follows:
c zfz(ig)(l-ﬁ
“1c (b-20) t =P - 8 ax/z b b . (13)
m
" 1f1\+ 3 g(Z '
41 b 2 b
1f Brnitileness is defined as the ratio of the elastic energy contained in the body at

the point of instability to the energy which can be dissipated in the body (Figure 10-a),
it results to be a function of beam slenderness and initial crack depth:

1p s 1f{1\+ 3 g ao)
Brittleness = 2 Mmax max _ 4 (B) 2 (7; . (14)
Src(b-ag)t 2 (1— @) f2(a_o)
b b

When the beam is initially uncracked, i.e., aO/b = 0, the brittleness tends to
infinity and the softening branch is coincident with the elastic one (Figure 10-b).
On the other hand, when the initial crack length is different from zero (ag # 0), the
brittleness tends to the value in equation (14) for the size-scale tending to infinity
(Figure 10-a). In this case, the softening branch is always distinct from the elastic

one.

When the beam is initially uncracked, the elastic energy contained in the body
at the point of instability is an infinite quantity of higher rank with respect to
the fracture energy, the former being proportional to b3 (Dﬁ/E} and the latter to b< gIC.
When there is an initial crack, the two gquantities are of the same rank for the size-
scale b tending to infinity, their ratio being finite and provided in equation (14).
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