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ABSTRACT. A high-cycle multiaxial fatigue criterion, based on a combined critical point method-critical plane 
approach, is used to estimate the multiaxial endurance limit in notched metal structural components. 
Accordingly, the position of the critical point and the orientation of the critical plane (plane where fatigue 
strength assessment has to be performed) are determined on the basis of some pseudo-isostatic lines related to 
the stress fields experiencing, at each material point, the maximum principal stress in the loading cycle. Some 
experimental results related to holed steel specimens subjected to in-phase and out-of-phase axial and torsional 
loading are analysed. The comparison between experimental results and theoretical values determined through 
the above criterion is instrumental in highlighting the notch size-effect (as the hole diameter varies) under 
uniaxial and biaxial far-field stress conditions as well as the effect of the loading phase. 
 
SOMMARIO. Un criterio di resistenza a fatica multiassiale ad alto numero di ciclo, formulato combinando il 
metodo del punto critico con l’approccio del piano critico, è utilizzato per predire la resistenza a fatica 
multiassiale in componenti strutturali metallici intagliati. La posizione del punto critico e l’orientazione del piano 
critico (piano su cui viene effettuata la verifica di resistenza a fatica) sono determinati sulla base di una sorta di 
linee isostatiche relative a campi tensionali corrispondenti, in ciascun punto materiale, alla massima tensione 
principale di trazione durante un ciclo di carico. Vengono analizzati alcuni risultati sperimentali relativi a provini 
d’acciaio contenenti piccoli fori, soggetti a carichi assiali e torsionali in fase e fuori fase. Il confronto tra tali 
risultati sperimentali e i valori ottenuti mediante il suddetto criterio evidenzia sia l’effetto della dimensione 
dell’intaglio sulla resistenza a fatica in condizioni di sforzo remoto mono e biassiale sia l’effetto della non 
proporzionalità del carico.  
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INTRODUCTION 
 

atigue failures in structural components almost invariably occur at stress concentrators such as notches and 
material flaws.  Circular holes are the geometrically simplest stress concentrators.  Nevertheless, when submitted to 
multiaxial remote cyclic loading, they produce a variety of different stress field features (in their vicinity) which 

influence the fatigue resistance of the structural components [1-5]. 
The high-cycle uniaxial fatigue resistance of notched components can be assessed by means of critical distance approaches 
[6-10].  Accordingly, the fatigue assessment is performed by considering the relevant stress component in a critical point 
at a certain distance from the notch root or by averaging a relevant stress component over a linear path emanating from 
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the notch root or over a volume ahead of the notch.  When a notched structural component is subjected to multiaxial 
cyclic loading, appropriate stress components must be selected in order to exploit the above critical-distance approaches, 
and a multiaxial fatigue criterion must be applied (e.g. see [11]). 
Some years ago, the present authors proposed a high-cycle critical plane-based multiaxial fatigue criterion [12] suitable for 
smooth components.  Such a criterion has recently been extended to notched components under multiaxial loading by 
employing a critical point method [13,14].  In the present paper, a simplified version of this criterion [15,16] is applied in 
combination with a critical point approach.  For the case of holed structural components under biaxial non-proportional 
remote loading, the choice of the appropriate path for determining the position of the critical point is discussed.  In the 
presentation of the results, emphasis is placed on the effects of hole size, biaxiality ratio and load phase on the multiaxial 
fatigue resistance. 
 
 
DEFINITION OF THE EQUIVALENT STRESS ACTING ON THE CRITICAL PLANE 
 

 multiaxial fatigue criterion based on the so-called critical plane approach has been proposed by Carpinteri and 
Spagnoli (C-S criterion) [12-14] to estimate the high-cycle fatigue strength (either endurance limit or fatigue 
lifetime) of both smooth and notched metallic structural components submitted to any periodic proportional or 

non-proportional multiaxial loading.  Then, a simplified version of the C-S criterion has been presented in Refs [15, 16].  
The main steps of the simplified C-S criterion are as follows: 
 Averaged directions of the principal stress axes are determined on the basis of their instantaneous directions; 
 The orientation of the critical plane (also termed verification plane) is linked to the averaged directions of the 

principal stress axes. Two material parameters are required at this step: fatigue strength 1,af  (under fully 

reversed normal stress) and fatigue strength 1,af  (under fully reversed shear stress) at a reference number of 

loading cycles; 
 The mean value and the amplitude (in a loading cycle) of the normal stress and shear stress, respectively, acting 

on the critical plane are computed; 
 The fatigue strength estimation is performed via a quadratic combination of normal and shear stress components 

acting on the critical plane.  In the case of finite-life fatigue evaluation, two further material parameters are 
required at this step, namely the slopes of the S-N curve in the high-cycle regime under fully reversed normal 
stress and fully reversed shear stress, respectively. 

At a given material point P , the direction cosines of the instantaneous principal stress directions 1 , 2  and 3  (being 
     ttt 321   ) with respect to a fixed PXYZ  frame can be worked out from the time-varying stress tensor  tσ .  

Then the orthogonal coordinate system P123  with origin at point P  and axes coincident with the principal stress 
directions can be defined through the principal Euler angles,   , , , whose ranges at the end of a two-stage reduction 

procedure [12] are as follows: 2,0     and 22   . 

The averaged directions of the principal stress axes 3̂,2̂,1̂  are obtained from the averaged values  ˆˆˆ  , ,  of the principal 

Euler angles.  Such values are computed by independently averaging the instantaneous values      t ,t ,t  , as follows 
[16]: 
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with T = period of the loading cycle.  By assuming the following weight function  tW : 
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where max,1  is the maximum value (in the loading cycle) of the maximum (tensile) principal stress 1 .  Note that, 

according to the weight function in Eq. 2, no averaging procedure is actually required since the averaged principal stress 
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axes coincide with the instantaneous principal directions corresponding to the time instant at which the maximum 
principal stress 1  achieves its maximum value during the loading cycle, and this makes the implementation of the 
criterion straightforward. 
The orientation of the critical plane is correlated with the averaged directions of the principal stress axes [12].  In more 

detail, the empirical expression for   ( = angle between the normal w to the critical plane and the averaged direction 1̂  

of the maximum principal stress, where w belongs to the principal plane 3̂1̂ ) is assumed to be as follows: 
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Equation 3 is valid for hard metals which are characterised by values of the ratio 1,1,  afaf   ranging from 31  to 1 

(note that the lower limit of 1,1,  afaf   corresponds to the Von Mises strength criterion of mild metals for static 

loading).  In the light of the above, the orientation of the critical plane depends on the time-varying stress state as well as 
the material parameters 1,af  and 1,af . 

For multiaxial constant-amplitude cyclic loading, the normal stress vector N and the shear stress vector C lying on the 
critical plane are periodic functions of time.  The direction of the normal stress N(t) is fixed with respect to time: 
consequently, the mean value mN  and the amplitude aN  of the normal stress can readily be calculated.  On the other 

hand, the definitions of the shear stress mean value mC  and amplitude aC  are not unique, due to the generally time-

varying direction of C.  The procedure proposed by Papadopoulos [17] is applied to determine mC  and aC  [12-16]. 

As is well-known, the effect of a tensile mean normal stress superimposed upon an alternating normal stress strongly 
reduces the fatigue resistance of metals, while a mean shear stress superimposed upon an alternating shear stress does not 
affect the fatigue life.  Therefore, the following multiaxial fatigue strength condition is adopted [16]: 
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where the equivalent normal stress amplitude acting on the critical plane is given by: 
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with u = ultimate tensile strength.  Eq. 5 is based on the well-known linear interaction between normal stress amplitude 

and normal stress mean value (diagram of Goodman). 

Finally, in order to transform the actual periodic multiaxial stress state into an equivalent uniaxial normal stress state (with 

amplitude eqa , ), Eq. 4 can be rewritten as follows: 
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POSITION OF THE CRITICAL POINT 
 

onsider a traction-free notch surface contained in a body submitted to a constant-amplitude loading. At any point 
on the notch surface, a principal stress is always null and its direction is normal to the notch surface.  The point H 
of crack initiation (the so-called hot spot) on the notch surface (see Fig. 1 where, for the sake of simplicity, a plane C 
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stress/strain situation is considered) is assumed as that point experiencing the maximum value of eqa, (Eq. 6).  Note 

that, under any applied multiaxial loading, principal stress directions on the notch surface are fixed with respect to time 

and, hence, averaged principal stress directions 1̂  and 3̂  are those depicted in Fig. 1 ( 1̂  is tangent to the notch surface 

and 3̂  is normal to such a surface).  Consequently, the hot spot corresponds to the point (on the notch surface) where the 
amplitude of the maximum principal stress attains the greatest value. 
Along the mainstream of the critical distance theory proposed by Taylor [10], we consider hereafter a critical point 
approach. Accordingly, the endurance limit condition in a notched structural component occurs when the amplitude of a 
selected stress component, computed through a linear elastic analysis at a certain distance from the notch tip, is equal to 

1,af .  Such a distance is equal to L/2, where L is the ElHaddad intrinsic crack length [18], that is: 
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thIK ,  being the threshold range of the stress intensity factor for long cracks. Note that the two material parameters in 

Eq. 7 should be related to the same loading ratio. 
In the following, we consider two alternatives to define the path along which the position of the critical point P is 
calculated: (i) the critical point P is at a distance L/2 from the point H, measured along the direction normal to the notch 
surface; (ii) the critical point P is at a distance L/2 from the point H, measured along a generally curved path normal to 

the corresponding averaged direction 1̂  of the maximum principal stress, described in the previous section.  In other 
words, the path of the definition (ii) corresponds to pseudo-isostatic compressive lines related to the stress fields 
experiencing, at each material point, the maximum principal stress in the loading cycle. Note that the definition (i) is 
slightly different from that proposed in Refs [13, 14]. 
Once the position of the critical point P is determined according to the above two definitions, the stress tensor at such a 
point is processed through the C-S criterion described in the previous section.  
 

 
 

Figure 1: Position of the hot spot H and two alternative definitions of the path for calculating the position of the critical point P in the 
case of a general traction-free notch surface (plane stress/strain conditions are assumed). 
 
 
COMPARISON WITH EXPERIMENTAL RESULTS  
 

ome experimental results concerning round bars with artificially drilled surface holes under proportional and non-
proportional loadings are considered [19, 20].  The specimens, having a hole with diameter D ranging from  40 to 
500 m, are subjected to fully reversed bending or torsion or combined in-phase and 2/  out-of-phase bending S 
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and torsion.  Two materials are analysed: 0.37%C annealed carbon steel (JIS S35C) with Vickers hardness equal to 160, 

1,af = 233 MPa, 1,af = 145 MPa; chrome-molybdenum quenched and tempered steel (JIS SCM435) with Vickers 

hardness equal to 327, 1,af = 379 MPa, 1,af = 218 MPa.  

Due to the lack of experimental data, the ElHaddad distance L is determined, as is suggested for instance in Ref. [21], by 
knowing the experimental fatigue limit under uniaxial loading of a smooth specimen and a single holed specimen.  
Accordingly, the distance L/2 from the notch surface is that at which the equivalent stress eqa , , calculated according to 

Eq. 6 for the stress level corresponding to the fatigue limit of the holed specimen, is equal to the fatigue strength for 
smooth specimens 1,af .  The calculated distance L/2 from the notch surface is equal to 37.6m for JIS S35C steel and 

38.2m for JIS SCM435 steel. 
The applied far-field stress amplitudes ax ,  (due to bending) and axy ,  (due to torsion) are shown in Fig. 2, where the xy 

plane is tangent to the bar surface in the hole centre.  The stress state in the vicinity of the hole is here determined 
according to the Kirsch solution for plane stress state [22].  The values of the biaxiality ratio axaxy ,,    considered in 

the experimental tests are: 0 (pure bending), 0.5, 1.0, 2.0,   (pure torsion).  The phase angle  between the two applied 
stress components is equal to 0 (proportional loading) and ½  (non-proportional loading). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Normal and shear stresses acting on a specimen with a circular hole of diameter D.  The position of the hot-spot is defined 
by the angle . 
 
As far as the position of the hot spot H is concerned (Fig. 2), it has been demonstrated analytically [14] that, for phase 
angle  equal to 0,   k½  with 3,1k  and  2arctan½  (   0,¼ ). On the other hand, for  = ½ , we 

have   k  for 83  with 1,0k  and   1
 28-2½arccos   (   ½¼ , ), and  ½  for 

83 . Hence, the hot spot position exhibits a multiplicity 4 when  = ½  and 83 , and a multiplicity 2 in the 

remaining cases.  In Fig. 3, the hot spot position (see angle  in Fig.2, with  9045  ) as a function of the biaxiality 
ratio is reported for phase angle equal to 0 or ½ .  
Fig. 4 illustrates the paths according to the definitions (i) and (ii) to calculate the position of the critical point P as the the 
biaxiality ratio  and the phase angle  are made to vary.  Note that, in the case of holed specimens under pure bending 
( 0 ) or under pure torsion (  ), the two definitions (i) and (ii) of the path along which the critical point P is 
located yield radial paths which are normal to the x axis (loading axis) and 4/ -inclined with respect to the x axis, 
respectively. 
The comparisons between experimental results [19, 20] and theoretical evaluations of fatigue limit as a function of the 
hole diameter for bending, torsion and combined bending and torsion are reported in Figs 5 and 6 for the two materials 
examined, respectively.  
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Figure 3: Hot spot position (  2/,4/   ) as a function of biaxiality ratio  and phase angle . 
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Figure 4: Paths emanating from the circular hole, for critical point calculation as the biaxiality ratio  and the phase angle  vary: (i) 
normal path; (ii) pseudo-isostatic path. 
 
 
CONCLUSIONS 
 

he present study represents an attempt to evaluate fatigue limit conditions for multiaxially-loaded notched 
structural components, by combining a critical plane-based criterion proposed by the authors with a critical-
distance method.  In particular, following the philosophy of the point method, fatigue limit conditions occur in a 

notched structural component subjected to far-field multiaxial loading when the amplitude of the equivalent normal stress, 
defined according to the proposed criterion, attains the normal stress fatigue limit for plain structural components in a 
point at a certain distance from the hot spot on the notch surface.  Such a distance, which has to be regarded as a material 
constant, is chosen to be measured along two alternative paths (so-called normal path and pseudo-isostatic path).  The 
comparison with some experimental results concerning circular notches shows a reasonably good evaluation capability of 
the proposed criterion.  No significant differences are observed by changing the path for the critical point calculation. The 
theoretical results appear to correctly evaluate the notch size-effect as well as the effect of the loading phase observed in 
the experimental data. 
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Figure 5: Experimental results [19, 20] and theoretical evaluations of fatigue limit as a function of the hole diameter for bending, 
torsion and combined bending and torsion (material JIS S35C). 
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Figure 6: Experimental results [19, 20] and theoretical evaluations of fatigue limit as a function of the hole diameter for bending, 
torsion and combined bending and torsion (material JIS SCM435). 
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