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ABSTRACT. We propose a construction of fatigue laws from cohesive forces models in the case of a crack 
submitted to a mode I cyclic loading. Taking the cumulated opening as the memory variable and the surface 
energy density associated with Dugdale's model, we explicitly construct the fatigue law which gives the crack 
growth rate by cycle /d dN  in terms of the stress intensity factor IK . In particular, we recover a Paris law 

with an exponent 4,  i.e.  4/ = Id dN CK , when IK  is small, the coefficient C  being explicitly expressed in 

terms of the material parameters. Furthermore, the law can be applied in the full range of values of IK  and can 
be extended to non simple cycles. 
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INTRODUCTION 
 

t is not possible to account for fatigue phenomenon,  i.e.  for propagation of a crack under cyclic loading, within 
Griffith's theory ( i.e.  when the material behavior is purely elastic and the crack lips are free of cohesive forces), 
because the response is unchanged after the first cycle. That becomes possible with cohesive forces but only if a right 

irreversibility condition is introduced into the model. Indeed, it is essential that the cohesive forces depend on the sign of 
the rate of the displacement jump and not only on the current value of the displacement jump. Owing to this directional 
rate dependence, we obtain a response which differs in loading and unloading phases. Moreover, by introducing into the 
constitutive relation a memory variable which cumulates all the oscillations of the displacement jump, one can explain that 
the cohesive forces decrease gradually to zero. Therefore, by this effect of accumulation under cyclic loading, all the 
liaisons will finally break everywhere along the crack path, even if the amplitude of the loading is small. To our knowledge, 
this idea was first introduced by [23] in the context of Damage Mechanics. It is now a well-established principle which is 
included in all cohesive models used in fatigue. This concept was used again in [18, 19] and coupled with a variational 
approach consisting in a sequence of energy minimization problems. With these three fundamental ingredients: cohesive 
forces, accumulation of dissipated energy and energy minimization, it becomes possible to develop a general theory of 
crack propagation under any type of loading, monotonic as well as cyclic. Then, a particularly exciting challenge is to 
establish a link between the two paradoxical propagation laws of Griffith [17] and Paris [31, 30]. The former is generally 
considered as valid under monotonic loading, but must be replaced by the latter under cyclic loading. However, the latter 
has only a phenomenological character and is not based on well established physical foundations. Therefore, the challenge 
is to show that ``good" cohesive models (in the sense above) give rise to Griffith-like crack propagation under monotonic 
loading and to Paris-like crack propagation under cyclic loading. This task was achieved in [19], but only in the one-
dimensional simplified setting of a thin film peeling. That needs to introduce, as a last ingredient, an asymptotic method 
based on the presence of a small parameter. Indeed, a cohesive model necessarily contains (at least) one material 
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characteristic length. For example, in Dugdale's model if cG  denotes the usual critical energy release rate and c  is the 

yield stress, then their ratio = /c c cd G   is a characteristic length. If this length is small in comparison to the size of the 
body (and it is generally the case in the engineering structures), then it is possible (and even highly recommended) to 
analyze the asymptotic behavior of the response when the small parameter goes to zero. In the above mentioned 
simplified context, it was proved in [19] that the response governed by a cohesive model under monotonic loading (or 
small number of cycles) converges to that governed by Griffith's law, while the response under a large number of cycles 
converges to that of a Paris-like fatigue law. The construction of this ``limit" fatigue law is even explicit in the case of 
Dugdale's model with a condition of irreversibility based on the concept of cumulated opening. In fact the limit fatigue law 
itself allows to establish the link between Griffith and Paris. Indeed, this law reads as / = ( )d dN f G  where   is the 

length of the crack, N  the number of cycles and G  is the energy release rate. The function f  is defined only for 

cG G , is undetermined when = cG G , is monotonically increasing when 0 < < cG G  and behaves like mCG  when 

G  is small in comparison with cG . In the case of a thin film, the exponent m  depends on the form of the strain energy. 
In any case, this elementary example shows that the challenge is reasonable. 
The goal of the present paper is to extend this construction and the results to a more realistic two-dimensional setting. In 
fact, the results have been already announced in [1] and [2] but without any proof. All the construction and proofs are 
detailed here. Specifically, the paper is organized as follows. In Section 2, we introduce the cohesive model with the 
cumulated opening as the unique memory variable, the crack being assumed to be always in mode I. Then, we formulate 
the evolution problem from a variational approach in the general context of a two-dimensional body with a crack 
propagating along a predefined path. The two main ingredients of the variational formulation are a stability criterion and an 
energy balance. We obtain thus in a rational manner all the conditions that the normal stress, the opening, the opening rate 
and the cumulated opening must satisfy along the crack path. These conditions are particularized in the case of Dugdale's 
model and cyclic loading. Section 3 is the central one where the construction of the limit fatigue law is developed. 
Assuming that the characteristic length cd  is small, we propose a two-scale method based on a priori assumptions which 
will be checked a posteriori. One of the main assumption is the concept of stationary regime at small scale which constitutes 
the cornerstone of the construction. Then, we assemble, step by step, the different components of the fatigue law. We 
distinguish in particular a large scale problem where the cohesive forces can be neglected and a small scale problem where 
they play an essential role. The former problem is structural by nature and hence will change from one problem to the 
other. On the other hand, the small scale problem is only dependent on the material behavior, the cohesive model and the 
type of cyclic loading, but not on the overall geometry and boundary conditions. In that sense, it has a universal character. 
The main difficulty of the paper is to solve this local problem (in a quasi closed form). That needs to determine the 
evolution along one cycle under the constraint imposed by the stationary regime assumption. One step in this procedure 
consists in solving a non linear equation involving /d dN  and G . That equation comes from the cumulated opening 
rule, has the same form as in the case of the peeling test and enjoys the same properties. That yields the desired fatigue law 

of Paris-type / = ( )d dN f G  which can be approximated by a power law 2/ =d dN CG  when / cG G  is small. The 
section ends by checking all the a priori assumptions. In Section 4 we establish some additional properties of the fatigue 
law. We study also the influence of the different ``parameters" of the modeling on the derived fatigue law. We consider in 
particular the case when the unloading is not complete at the end of a cycle and establish a fatigue law in terms of the 

maximal value and the amplitude of the stress intensity factor, / = ( , )Md dN f K K . We compare also the fatigue law 
in mode I with that in mode III. The paper is completed by an appendix where a generic small scale problem is solved and 
which is used several times in Section 3. 
Let us complete this introduction by a short state-of-the-art. There exists some attempts to recover fatigue laws from 
more fundamental mechanisms of propagation of defects, like [35] based on the dislocation theory, but they cannot be 
considered as really complete and satisfactory. The need for introducing cohesive forces so that to remove some 
fundamental drawbacks of Griffith's theory (like stress singularity or unphysical opening shape) is well known from the 
pioneering works by Dugdale [11] or Barenblatt [4]. A lot of interfacial models have been developed in this spirit, [27] 
being the prototype. The introduction of an irreversibility condition based on the concept of a loading-unloading 
hysteretic behavior like that proposed first in [23] is more recent, but tends to become the rule, see for instance [36, 28, 
32, 33, 3, 22]. However, these models are generally used in purely numerical studies with the objective to identify from 
computational tests the ``effective" fatigue law. To our knowledge, there exists none work before [19] where a rigorous 
link is established between Griffith' law, Paris law and cohesive models. The reason is probably the lack, in all these 
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computational works, of a theoretical framework in which it becomes possible to develop asymptotic methods. The 
variational approach provides this theoretical framework. Strongly inspired by the French School of Generalized Standard 
Materials and the works by NGuyen Q. S. [29], it can be applied in a general setting of rate independent behaviors, see 
[25, 15]. In the fracture mechanics setting, the variational approach has been largely developed since the late of 
nineteenths and the Francfort-Marigo paper [14]. Several theoretical results have been obtained in the Griffith theory 
setting, see [10, 9, 5]. Many improvements have been incorporated in order to include cohesive forces, see [20, 24, 16, 7, 
12, 5]. But to our knowledge, the formulation of such cohesive models in the framework of a variational approach is due 
to [18]. Based on a ``discrete in time" minimization problem, its ``continuous in time" version has been proposed by [13], 
see also [5]. As far as a rigorous deduction of Paris fatigue law from cohesive models is concerned, we have knowledge of 
none work except [18, 19, 1, 2]. 
Throughout the paper we use classical notations: vectors and second order tensors are in bold face, their components are 
in italic, the inner product between vectors or tensors is indicated by a dot, like f u , time derivative is denoted by a dot, 

like u . No use is made of summation convention over repeated indices, a  denotes the positive part of a ,  i.e.  

= max{ ,0}a a . The jump of a discontinuous field across a curve is denoted by double brackets, like  nu . The 

dependence of a field (or more generally of any physical quantity) on a parameter is emphasized either by inserting the 
parameter inside square brackets just after the symbol of the field or by putting the parameter as a superscript. Thus, the 

displacement field at time t  is denoted by tu  and to emphasize its dependence on the current crack length   it will be 

denoted [ ]tu   (or simply [ ]u   if the value of t  is clear in context). From the technical standpoint, we essentially use the 
basic tools of the Calculus of Variations, some classical results of the theory of complex potentials [26] and basic concepts 
of Fracture Mechanics [6, 8, 21, 34]. 
 
 
THE COHESIVE MODEL 
 

hroughout the paper, all the analysis is made in a two-dimensional setting of plane strain. One uses a cartesian 
coordinate system 1 2( , )x x  with its canonical orthonormal basis 1 2( , )e e  and 3 1 2= e e e  denotes the unit anti-

plane vector. We consider a body, the reference configuration of which is the open subset   of 2 , submitted 

to a time-dependent loading consisting in prescribed displacement t  on the part D   of the boundary, in prescribed 

surface forces Ft on the complementary part F   of the boundary and in prescribed body forces ft in  . All these data 
are supposed smooth, both in space and time. The loading causes the propagation of a crack along a predefined crack path 

̂ , smooth simple curve with unit normal n  and across which the displacement can be discontinuous. The simple curve 

representing the crack path ̂  is parameterized by its arc length s , say ( )s sx . It will be often identified with the real 

interval [0, ]cL , cL  being its length. In the unbreakable part ˆ\   of the body, the material has an isotropic linear elastic 

behavior characterized by Young's modulus E , Poisson's ratio   and Lamé's coefficients  ,  .  
 

   
Figure  1:   The body   with the predefined crack path ̂  and its parameterization. 

T 
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We assume that the body, the loading and the crack path are so that the crack is always in mode I,  i.e.  only the normal 

displacement can be discontinuous on ̂ . We denote by t
nu     and t

nu     the jump and the rate of the jump of the 

normal component of the displacement at time t  at a point on the crack path and call them the opening and the rate of 

opening. The opening must satisfy the non interpenetration condition 0t
nu      at every t :    

 

 ˆ= , 0, on .t t t
n nu u  u n                 

 

Accordingly, ``by symmetry", the tangential stress always vanishes on ̂ . We denote by t
nn  the normal component of 

the stress vector and call it the cohesive force when it is positive and the contact force when it is negative. The relationship 
between the current cohesive force and the current opening (or, more generally, the history of the opening up to the 
current time) is obtained via a variational approach from fundamental assumptions on the surface energy density.  
 
Remark 1 This mode I assumption could appear very strong as it is formulated above and only valid in very few cases. Indeed, the tangential 

displacement will be continuous through ̂  only in the case of a symmetric body, a symmetric loading and a symmetric crack path. However, in 
order that the two-scale procedure developed in Section 3 remains valid it is sufficient that this condition holds in the neighborhood of the crack 
tip. Specifically, it is sufficient that IIK [ ] = 0  for all (0, )cL , IIK [ ]  being the mode II stress intensity factor appearing in the large 
scale problem of Section 3.2. Therefore, the condition is local in space at given t  and is satisfied for every t  if the crack path is such that the 
propagation follows the Local Symmetry Principle.  

  
The variational formulation without any irreversibility condition 
Let us first consider the case when the opening is always monotonically increasing in time,  i.e.  when 0 = 0nu     and 

0t
nu     . Then it is useless to introduce any condition of irreversibility and the surface energy density is a function   of 

 nu  alone. To obtain precise mathematical results, it is necessary to suppose that   enjoys some relevant concave and 

monotonic properties, see [24]. However, since in this paper all the developments will be made with Dugdale's surface 
energy, we simply assume that   is defined on [0, ) , monotonically increasing and piecewise smooth with (0) = 0  

and = (0) > 0c  , the prime denoting the derivative. 
Since the response of the body depends on the current loading only and not on its history, we omit the superscript t . Let 
v  be a kinematically admissible displacement (with the constraint that only its normal component can be discontinuous 

on ̂ ),  i.e.   
 

     1 2ˆ ˆ= { ( \ , ) : = on , = 0 }D n nH v with v on      v v v v n  

 

where 1H  denotes the usual Sobolev space. The associated total energy of the body is given by    
 

 1

2ˆ ˆ\
( ) = A ( ) ( ) ( ) Fn

F

dx v ds f dx ds  
     

        v v v v v  

 

where A  denotes the stiffness tensor of the material and ( ) v  is the symmetric part of the gradient of v . The true 

displacement field u  is (the) one in   which satisfies the following local minimality condition:    
 

, > 0 : [0, ], ( ) ( ( )).h h h h       v u u v u        (1) 
 

Dividing by > 0h  the inequality above and passing to the limit when 0h  , we obtain the so-called first order optimality 
condition    
 

   ˆ ˆ\
, ( ) ( ) f ( ) F ( )n n n

F

dx u v u ds dx ds  
     

              v v u v u v u  (2) 
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where = A ( )  u  denotes the stress field. The variational inequality (2) is equivalent to a system of local equalities and 
inequalities which are obtained by considering different types of test fields v .   
 

1.  Let = wv u  with =w 0  on D   and   = 0nw  on ̂ . Inserting into (2) and using standard arguments of 

Calculus of Variations lead to the local equilibrium equations and the natural boundary conditions    
 

ˆf = \ , = F on .Fdiv in     0 n       (3) 
 

Moreover, we obtain also that the normal stress is continuous on ̂  while we assume that ``by symmetry" the shear stress 

vanishes on ̂ :    
 

  ˆ= , = 0 on .nn nn   n n         (4) 

 
After inserting (3) and (4) into (2), the first order optimal condition becomes    
  

   ˆ
, ( ( ) ) 0.n nn n nu v u ds 


    v        (5) 

  

2.  Let us divide ̂  into two parts: c  where  = 0nu  and o  where  > 0nu . We obtain that (5) is satisfied if and 

only if the cohesive forces repartition verifies    
 

 

 

 

c

o

ˆ= (0) on = { : ( ) = 0}

.

ˆ= ( ) on = { : ( ) > 0}

nn c n

nn n n

s u s

u s u s

  

 

   


   

      (6) 

  

Remark 2 The first order optimality condition (2) contains not only the normal stress-opening relation  = ( )nn nu   but also the stress 

yield criterion nn c   for the onset of opening. In the present case where only the normal displacement is discontinuous, this criterion is 
simply a maximal traction criterion. This fundamental result can be generalized in a three dimensional setting for general surface energy densities 
to obtain more general stress yield criteria, see [20] and [7].  

 
Introduction of an irreversibility condition and the new evolution problem 
When the surface energy density depends only on the current opening, the response of the body depends only on the 
current loading. Therefore, in the case of cyclic loading, the response is the same at each cycle, the crack cannot propagate 
progressively from one cycle to the other and no fatigue effect is possible. Accordingly, we must introduce irreversibility 
conditions and consider that the surface energy density depends on the entire history of the opening. To this end, the 
normal stress-opening relation is customarily defined by using memory variables, say  , see [22, 28, 32, 33, 36]. In a 
variational approach that consists first in defining the surface energy density as a function of the current opening and 
these memory variables. Here, in a two-dimensional mode I setting, we make the simplest choice as in [18, 19, 2]. We 
choose as memory variable the cumulated opening up to time t  defined at each point s  of the crack path by    

 

0

0
( ) = ( ) ( ( )) ,

tt t
ns s u s dt                  (7) 

 

where 0  represents the given initial value of the cumulated opening and the + denotes the positive part. In a differential 
form, (7) reads as  
 

 = .nu    
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Then, we assume that the surface energy density is the same function   as in the previous subsection, but now depending 

on the cumulated opening instead of the opening. Accordingly, the surface energy of the body at time t , say t , reads as  
  

ˆ
= ( ( )) .t t s ds 

  

 
In the spirit of the ideas developed in [25, 5, 13], the evolution of the cracking in the body is defined in terms of a stability 
criterion and an energy balance principle. 

Let us first introduce the stability condition. To test the stability of the state ( , )t tu  of the body at time 0t  , we 

consider a kinematically admissible displacement v  at time t ,  i.e.  tv   with    
 

     1 2ˆ ˆ= { ( \ , ) : = on , = with 0 on }.t t
D n nH v v     v v v n  

 

Replacing the true displacement tu  by the virtual one v , the deformation of the body undergoes the virtual jump 

discontinuity tv u  at time t  and therefore the associated virtual cumulated opening at time t  reads as 

* =t t t
n nv u 


     . Accordingly, the total energy of the body at time t  associated with this virtual displacement v  

reads as    
 

1

2ˆ ˆ\
( ) = A ( ) ( ) ( ) f F .t t t t t

n n
F

dx v u ds dx ds    

     
          v v v v v      (8) 

 

The stability condition consists in using the local minimality condition (1) with the new expression of the energy,  i.e.     
 

, > 0: [0, ], ( ) ( ( )).t t t t t th h h h       v u u v u        (9) 
 

However, the stability condition alone is not sufficient to define the evolution of the body. It must be completed by the 
energy balance which reads as    
 

0 0

0
( ) = ( ) f F

tt t t t t t t t

D F

ds dx ds dt      

    

        
    u u n u u       (10) 

 

where f , F  and   denote the rate of the data. In (10), 0u  denotes the initial displacement field which must be 

compatible with the stability condition (9) written at = 0t  with the data 0 , 0f , 0F  and 0 . 
 

Remark 3 Therefore, the evolution problem consists in finding ( , )t tt u  which satisfies, at every 0t  , (7), (9) and (10). The main 
advantages of such a formulation are the following ones:   

    1.  it is valid for any type of loading (with the unique restriction that the loading is smooth in time) and can be 
used both for monotone or cyclic loading;  

    2.  it can be easily extended to a very general framework (3D, anisotropic and heterogeneous body, ...);  
    3.  it contains a stability condition which can be used as a criterion of selection of solutions. Indeed, since the 

surface energy density is usually a concave function of  , the total energy is not a convex function of v  and the 
uniqueness of the solution is not guaranteed;  

    4.  it does not require that the evolution is smooth in time (only the data have to be smooth). It allows to search 
for discontinuous-in-time solutions.  

Note that the proposed evolution law is rate independent. Indeed, let tt u  be a solution of (9) and (10) with the data 0  

and (f , F , )t t tt  . If a change of the rate of loading is made by considering a smooth one-to-one map ( )t t  such 

that (0) = 0  and / > 0d dt , then ( )=t tt u u  is a solution of the problem with the new data 
( ) ( ) ( )(f , F , )t t tt    .  
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From now on, we assume that there is no initial cumulated opening, 0 = 0  on ̂ , the loading starts from 0,  i.e.  
0 0 0f = F = = 0 , so that 0 =u 0 . Let us assume that the evolution problem has a smooth solution and let us proceed as 

in the previous subsection to obtain the local conditions satisfied by this solution (in particular, the normal stress-opening 
relations). 

Let > 0t , dividing (9) by > 0h  and passing to the limit as 0h  , we obtain the first order stability condition    
 

 
ˆ ˆ\

, ( ) ( ) f ( ) F ( ) .t t t t t t t t t
n n

F

dx v u ds dx ds    

     
              v v u v u v u     (11) 

 

Let us first take = t wv u  with =w 0  on D   and  = 0nw  on ̂ . Inserting into (11) gives, as in the previous 

subsection, the equilibrium equations and the natural boundary conditions,    
 

ˆf = in \ , = F on ,t t t t
Fdiv     0 n      (12) 

 

 as well as the continuity of the normal stress on ̂  (and we still assume the vanishing of the shear stress),    
 

ˆ= , = 0 on .t t t
nn nn   n n              (13) 

 

 After inserting (12) and (13) into (11), the first order stability condition becomes    
 

ˆ
, ( ( ) ) 0.t t t t t

n n nn n nv u v u ds  



     v                 (14) 

 

Let us divide ̂  into two parts defined in terms of t
nu    : c

t  (c like closed) where = 0t
nu     and o

t  (o like open) where 

> 0t
nu    . We obtain that (14) is satisfied if and only if the cohesive forces repartition is such that    

 

c

o

ˆ( ) on = { : ( ) = 0}

.

ˆ[0, ( )] on = { : ( ) > 0}

t t t t
nn n

t t t t
nn n

s u s

s u s

  

  

   


   

   

   

     (15) 

 

We see that, because of the introduction of an irreversibility condition (through the concept of cumulated opening), the 
first order stability condition is no more sufficient to obtain all the information concerning the cohesive forces. We have 
also to consider the energy balance. Assuming that the evolution is smooth, differentiating (10) with respect to time and 

using (8) with = tv u , we get    
 

ˆ ˆ\
( ) ( ) = f F .t t t t t t t t t t

F D

dx ds dx ds ds      
       

          u u u n       (16) 

 

Integrating by parts the first integral in the left hand side of (16) and using (12)-(13) we obtain   
  

ˆ
( ( ) ) = 0.t t t t

n nn nu u ds  


                     (17) 

 

After dividing ̂  into three parts defined in terms of t
nu    : a

t  (a like active) where > 0t
nu    , n

t  (n like neutral) where 

= 0t
nu     and p

t  (p like passive) where < 0t
nu    , (17) becomes    

a p

( ( ) ) = 0.t t t t t
nn n nn nt tu ds u ds   

 
                    (18) 

By virtue of (15), the first integral of (18) is non negative and vanishes if and only if = ( )t t
nn    on a

t . Because of the 

non interpenetration condition, p o
t t    and hence, by virtue of (15), the second integral of (18) is also non negative and 
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vanishes if and only if = 0t
nn  on p

t . Consequently, both integrals must vanish and we have finally obtained the 

following normal stress-opening relations which complete those of (15) (which have still to be satisfied):    
 

a

n

p

ˆ= ( ) on = { : ( ) > 0}

ˆ( ) on = { : ( ) = 0}.

ˆ= 0 on = { : ( ) < 0}

t t t t
nn n

t t t t
nn n

t t t
nn n

s u s

s u s

s u s

  

  



   




  


  

   

   

   

      (19) 

  
Remark 4 It appears that the cohesive force depends not only on the opening but also on the rate of opening. The cohesive force is activated when 
the opening increases but is deactivated when the opening decreases. It is not the value of the opening which is important, but the sign of its rate 
and the value of its cumulation. That constitutes the key property to obtain fatigue effects under cyclic loading. This idea was first introduced by 

[23] in the context of Damage Mechanics. Note that if the opening is always increasing once the crack is open,  i.e.  if > 0t
nu     when 

> 0t , then =t t
nu      at every t  and by applying the conditions (15) and (19) we recover (6). In other words, under monotone loading 

the two formulations are equivalent. The irreversibility condition plays a role only under non monotonic loading. 
 

The set of conditions (12), (13), (15) and (19) are only necessary conditions in order that the stability condition (9) be 
satisfied. They are, in general, not sufficient and second order stability conditions should be considered. However, we shall 
develop hereafter the construction of the fatigue law only from the first order stability conditions, the study of the role of 
the additional conditions is left for future work.  

 
Case of Dugdale's surface energy and of cyclic loading 
Let us particularize the previous formulation and results to the case of Dugdale's model and cyclic loading. In the case of 
Dugdale's model, the surface energy density is defined on [0, )  by    
 

if 0
( ) =

if

c c
c

c c

G d
d

G d

 
 



  

 

 

 

 
 

Figure  2:   Dugdale's surface energy density.  
 

where cG  is the critical energy release rate of Griffith's theory and cd  is a characteristic length of the material. Therefore 

the critical stress is = /c c cG d . The main particularities of Dugdale's model are   
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    1.  The cohesive force vanishes as soon as the cumulated opening becomes larger than cd . Accordingly, the 

crack path can be divided into three zones (which evolve with time): the still bonded zone B
t  where = 0t , the process 

zone (or genuine cohesive zone) C
t  where 0 < <t cd  and the already debonded zone (or non cohesive zone) D

t  

where >t cd . (Because of the concavity of   and its non differentiability at = cd , the points where =t cd  are 
isolated and can be neglected in this partitioning.)  

    2.    is piecewise linear and hence its derivative is piecewise constant. Consequently, the cohesive force is 

constant and equal to c  on the active part of the process zone whereas it vanishes everywhere on D
t . This property is 

very useful in the sequel to obtain solutions in a closed form.  
The normal stress-opening conditions read now as    
 

 

 

Ca

c B C

o Cn

c D

o Cp D

= on

on )

[0, ] on,

0 on

= 0 on

t t
nn c

t t t t
nn c

t t t
nn c

t t t
nn

t t t t
nn

 
 

 




 
           

    
    

 

 
with    
 

Ca C
B

Cn CC

D Cp C

= { : ( ) > 0}ˆ= { : ( ) = 0}

ˆ , = { : ( ) = 0}.= { : 0 < ( ) < }

ˆ= { : ( ) > } = { : ( ) < 0}

t t t
t t

n

t t tt t
nc

t t t t t
c n

u

ud

d u







         
 
 
     

x xx x

x xx x

x x x x

   

   

   

 

 
Only the cohesive zone has to be divided into active, neutral and passive zones, since the cohesive forces are equal to 0 in 
the debonded zone forever (but contact forces can be present). We consider a particular type of cyclic loading, called 
simple cyclic loading and defined as follows. The loading is proportional in the sense that    

 

= ( ) f , F = ( ) F, = ( )t t t
M M Mf t q t q t q      

 

where f , F  and   are normalized data which do not depend on time and Mq  is the amplitude of the loading. 

Furthermore, the real-valued function   is a seesaw-type function,  i.e.  periodic with period 2 and defined on [0, 2]  by    

 
if 0 1

( ) = .
(2 ) if 1 2

t t
t

t t


 
   

         (20) 

 
By virtue of the rate-independent character of the evolution law, only the monotonic properties of   are important, its 

piecewise linear character and the value of the period have no influence. For *i , we call cycle i  or  thi  cycle the time 

interval [2( 1), 2 )i i , loading phase of cycle i  the time interval (2( 1), 2 1)i i  , unloading phase of cycle i  the time interval 

(2 1, 2 )i i , end of loading of cycle i  the time = 2 1t i   and end of unloading of cycle i  the time = 2t i .  
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Figure 3: Simple cyclic loading . 

  
   

CONSTRUCTION OF THE FATIGUE LAW 
  

Main a priori assumptions and the two-scale procedure 
hroughout the section we consider only Dugdale's cohesive model with a simple cyclic loading. Moreover, we 
suppose that the size of the body is large in comparison with the internal length of the material and hence that the 
ratio = /c cd L  is a small dimensionless parameter:    
 

= 1.c

c

d

L
   

 

Therefore, = =c c c c cG d L  . The surface energy necessary to debond all the crack path is equal to 2
c cL  and hence 

of the order of  . We assume that the potential energy is also of the order of   what requires that the amplitude of the 

loading is of the order of   (otherwise, if the order of the loading amplitude is smaller than  , then the crack will not 

propagate, while, if the order of the loading amplitude is larger than  , then all the crack path will debond during the 
first loading phase). Accordingly, we set    

 

= .Mq   
 
But even in this restricted context, the properties of the solution (if any) of the evolution problem strongly depend on the 
geometry of the body, on the crack path and on the data. It is not possible to follow a purely deductive procedure and to 
obtain precise results without particularizing the problem, as in [19]. Therefore, we shall proceed as follows:   

    1.  We make a priori assumptions on the form of the solution, in particular on the shape and the size of the 
different zones of the crack path;  

    2.  We develop a two-scale approach based on the smallness of the internal length cd ;  
    3.  We check a posteriori the pertinence of the a priori assumptions.  
 

  Hypothesis.  The first a priori assumptions are the following ones (additional assumptions will be introduced later):   

H1 At time t , the non cohesive zone is the interval D = [0, )t t  , the process zone is the interval C = ( , d )t t t t    

and the bonded zone is the interval B = [ d , ]t t t
cL  ;  

H2 The length dt  of the process zone is of the order of cd  and hence small in comparison with cL ;  

H3 During any cycle i , the propagation of the tip of the non cohesive zone, that is 2 2 2i i  , is of the order of cd  

and hence small in comparison with cL ;  
H4 From one cycle to the other, at first approximation, the evolution follows a quasi-stationary regime.  

T 
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The first assumption is only introduced to simplify the presentation, the case with several process zones and several non 
cohesive crack tips could be treated in the same manner. The meaning of the last assumption will become precise later. 
The second and the third assumptions allow a scale separation, both in space and time. 
Let   be given in the interval (0, )cL , independent of  . From  H3, we deduce that a great number of cycles are 

necessary, say N , so that the length of the non cohesive crack be equal to  . N  is of the order of 1/   and if we 

consider 0= limT N  , T  can be seen as the real valued parameter characterizing the number of cycles at the macro-

scale. The main goal of the subsequent analysis is to find the relation between T  and  , that is the function ( )T T   
giving the evolution of the tip of the non cohesive crack at the macro-scale of cycles number. That requires to also 
consider the evolution problem at a small scale. Specifically, for a given i , independent of  , if we consider the cycle 
N i   or equivalently /T i  , then i  can be seen as the micro-scale number of cycles. By Hypothesis  H3 again, the 

propagation of the non cohesive crack tip during the cycle N i   is of the order of   and a priori 
2 2 2 2 2

0( ) /lim
N i N i 

   
    depends on T  (or  ) and i . But one main feature of Hypothesis  H4 is to claim that 

this limit is independent of i , say ( )T . Accordingly, 
2 2

= ( ) ( ) ( )
N i

T i T o        and ( )T  can be identified with 

( )
d

T
dT


. The main step in order to determine ( )T T   consists in finding the relation between ( )T  and global 

energetic quantities characterizing the state of the cracked body at ``time" T . For that, a separation of scale in space is 
also necessary. Specifically, we shall first construct an approximation of the displacement field at a large scale,  i.e.  at the 
scale of the whole body, with the help of Assumptions  H1--H3. This so-called large scale problem will give us the 
macroscopic energetic quantities like the effective Stress Intensity Factor IK  in terms of the length   of the non cohesive 

crack. Then we shall make a zoom of the tip of the non cohesive crack at the macro-time T  and consider the evolution 

problem at a micro-scale both in space and time. This so-called small scale problem will give the relation between   and IK . 

 
The large scale problem 

At time = 2 1t N  ,  i.e.  at the end of the loading phase of the cycle N , the amplitude of the loading is  , the tip of 

the non cohesive crack is at   and the length of the process zone is of the order of  . At a large scale, if we neglect the 

process zone, the true displacement and stress fields 
2 1 2 1

( , )
N N  

u  can be approximated by ( [ ], [ ])  u    (to 

avoid any confusion, the dependence in   is explicit) which are given by    
 

 

[ ] f = , [ ] = [ ] 2 ( [ ]) in \ [ ],

[ ] = F on , [ ] = on ,

[ ] = [ ] , [ ] 0, [ ] 0, [ ] [ ] = 0 on [ ]

F D

nn nn n nn n

div div

u u

   

 

   

    

    



  

0 u I u

n u n

n n

    

 

      

  (21) 

 

with always the mode I assumption and ˆˆ[ ] = { ( ) : [0, ]}s s  x  . The set of Eqns. (21) corresponds to an elastic 

problem posed on the cracked domain with a (non cohesive) crack of length   and with a loading given by the data 

(f , F, ) . The displacement [ ]u   will be in general singular at the tip ˆ ( )x   of the crack with the usual singularity in 

r . Specifically, because of the mode I assumption, the mode II stress intensity factor, say IIK [ ] , vanishes and 

[ ]( )u x  in the neighborhood of the tip of the crack can read as  
   

IK [ ]
[ ]( ) = ( ) [ ] ( )

2 2
S Rr 

 
u x u u x

         (22) 
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 with    
 

( ) = (3 4 cos ) cos ( ) sin ( )
2 2

S         
 

u t n 
 

 

where r  denotes the distance of x  to ˆ ( )x  ,   is the angle made by ˆ ( )x x   with the tangent ( )t   to ̂  at ˆ ( )x  , 

3( ) = ( )n e t  . In (22) [ ]Ru   denotes the regular part of [ ]u  , which is locally in 2H , and the mode I stress intensity 

factor IK [ ]  depends in general on  . Because of the non interpenetration condition, IK [ ]  is necessarily non negative 

and we shall assume that it is positive, what means that [ ]u   is really singular.   
 

H5 The effective stress intensity factor is positive: IK [ ] > 0 .  
 

Of course, this property is a global property which must be checked for each particular problem and each crack length. 
The consequence is that the crack is necessarily open in a neighborhood ( , )h   of the crack tip. Therefore, 

 [ ] ( ) > 0nu s  and [ ] ( ) = 0nn s   for ( , )s h   .  

 

Remark 5 For   sufficiently small, the condition 
2 1N

nn c
    is satisfied by its approximation [ ]    everywhere on ˆ \ [ ]   , except 

near the tip ˆ ( )x  , provided that [ ]   is not singular at another point of the crack path.  
 
In terms of energy, the real potential energy (difference between the strain energy and the work of the external forces) of 
the body at time = 2 1t N   is well approximated by the potential energy associated with the field [ ]u  ,  i.e.   
 

2 1
= [ ] ( )

N
o      

 
with    
 

1

2ˆ\
[ ] = A ( [ ]) ( [ ]) f [ ] F [ ] .

F

dx dx ds 
    

      u u u u      

 

Defining, as usually, the potential energy release rate G[ ]  as 
[ ]d

d






, we can use Irwin's formula to link G[ ]  with 

IK [ ] :    
 

2
2

I

[ ] 1
G[ ] : K [ ] .

d

d E


  

 



        (23) 

 
Note however that this concept of energy release rate is well defined only for the ``limit" problem,  i.e.  when the process 
zone is neglected. 
Let   be given and independent of  . By Hypotheses  H2-H3, the position of the non cohesive crack tip at time 

= 2 1t N    differs from   only by a term of the order of   and the length of the process zone is of the order of  . 

Hence the true displacement and stress fields at that time can be well approximated by ( [ ] , [ ] )  u    which are 

given by a set of equations similar to (21) the loading being now ( ( 1)f , ( 1)F, ( 1) )          with   given by 

(20). By virtue of the linear character of this elastic problem, we have [ ] = ( 1) [ ]   u u  . That means that, at a macro 
scale, neglecting the process zone and the propagation of the crack during a micro number of cycles, the response of the 

body oscillates because of the periodicity of the loading. Therefore, the stress intensity factor IK [ ]  oscillates between 0 

and IK [ ] :    
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I IK [ ] = ( 1)K [ ].      
 
The small scale problem: the rescaling and the stationary regime assumption 

The field [ ] u   is a good approximation of 
2 1N u  only far enough from the tip ˆ ( )x  . This approximation is 

sufficient for evaluating the energy of the whole body at this time, but not to determine the evolution of the crack from 
one cycle to the other. For that it is necessary to take account of the process zone and of the cumulative process of the 
opening during a cycle. We have to refine the analysis by considering the problem at a small scale, both in space and time. 
Let us change the time origin by setting = 2 1t N   . The rescaled times = 2i , i , correspond to the end of 

the loading phases of the  thi  cycle after (or before when i  is negative) the cycle N . Let us make a zoom of the crack tip 

( )x   by introducing the new cartesian coordinate system ( , )x y  where (0,0)  corresponds to the tip ˆ ( )x   and the axis 

x  corresponds to the direction of the tangent ( )t   to ̂  at ˆ ( )x  :    

 

3

ˆ
ˆ ( ) = ( ( ) ( )), ( ) = ( ), ( ) = ( ).

d
x y

ds
  

x
x x t n t n e t           (24) 

 

The small scale domain is then the plane 2  and the crack path is the axis = 0y . For a given   independent of  , 

denoting by U  , S  and   the approximation of the displacement, stress and cumulated opening fields near the crack 
tip ˆ ( )x  , we have    

 
2 1

2 1

2 1

ˆ( ) = ( 1) [ ]( ( )) ( , ) ( )

.( ) = ( , ) (1)

( ) = ( ) ( )

N

N

N

U x y o

x y o

x x o

 

 

 

    



   

 

 

 

   




 


   

u x u x

x

 



    (25) 

 
With these notations, we are in a position to formulate precisely Hypothesis  H4 and the concept of stationary regime. 
Specifically, we assume that    

 
2 2[0, 2), , ( , ) = ( , ), ( ) = ( )i ii U x y U x i y x x i                  (26) 

  
which means that from a cycle to the other the fields are simply shifted in the direction x  through the crack growth rate 
 . Therefore, the length of the process zone and the growth rate of the non cohesive crack tip are, at first approximation, 
2-periodic in  :    

 
2 1 2d = ( ), = , , ,
N iD o D D i

                   (27) 
    

2 1 2= ( ), = , ,
N iL o L i L i

                       (28) 
 

and, by definition, 0 = 0L . By virtue of this a priori assumption, it suffices to determine   and U  ,  ,  , D , L  
for [0, 2) . Let us recall for further reference the full set of relations they must satisfy:    
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= 0,
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L L L D L D

U U U

U

 

     

        
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 

 



     

         

        



I 0

                 

 



D

22 2 Ca 22 2 Cn 22 2 Cp

22 2 B

2

D C B

I

0 on

= , > 0 on , [0, ], 0 on , = 0, 0 on

, = 0 on

= on = 0

> on , 0 < < on , = 0 on

K [ ]
( cos , sin ) ( 1)lim

2

c c

c

c c

r

U U U

U

U y

L L

U r r



        

  

 

     



 



   





 

        

  



     

 



               

   

    


( ) = 0

2
Sr 

 































  
     

u

 

  
The structure of the solution that we construct in the next subsections is indicated in Fig. 4. Once the solution is found in 
the interval [0, 2) , it can be periodically extended to all   in order that (26)--(28) be automatically satisfied. However, it 

could happen that the so constructed solution be discontinuous at = 2i  for i  and hence we shall also check the 

continuity of U  ,  ,  , D  and L  at  =2. Note that the boundary conditions on the crack line have been 
simplified by assuming that there are no contact forces between the crack lips owing to the assumption that IK [ ] > 0 . 

The last equation of (29) giving the behavior of U   at infinity can be justified as follows. In order to match the two 

approximations of the displacement field 
2 1N   
u , the behavior of U   at infinity is given by the behavior of the 

singular part of [ ] u   at ˆ ( )x  . Specifically, close to ˆ ( )x   we have    

IK [ ]
ˆ ˆ[ ] ( ( ) ( )) = ( 1) [ ]( ( )) ( 1) ( ) ( )

2 2
Sr

x y o         
 

     u x t n u x u
     (30) 

 

with = cosx r   and = siny r  . Comparing (30) with the first of (25) yields the last of (29).  

Notation: In the next subsections up to Subsection 3.4, since   is fixed and plays the role of a parameter, we remove it 
from the notations.  

 

(29)
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Figure  4: Evolution of the non cohesive crack and of the cohesive crack during a cycle: in white, the non cohesive crack or the 
passive part of the cohesive crack; in gray, the neutral part of the cohesive crack; in black, the active part of the cohesive crack. The 
associated boundary conditions in terms of the normal stress or of the opening rate are indicated. The main stages of the evolution are 

as follows: at = 0 , all the cohesive crack is active and the cohesive stress is equal to c ; during the unloading phase, 0 < <1 , 

the cohesive crack becomes progressively passive, the cohesive stress is equal to 0 in the passive part while the opening does not 
evolve in the neutral part; at = 1  which corresponds to the end of the unloading phase, all the cohesive crack is passive; during the 

first part of the loading phase, *1 < <  , the tip of the non cohesive crack propagates while the tip of the cohesive crack does not 

evolve, a part of the cohesive crack remains neutral, the cohesive stress is equal to c  in the active part while the opening does not 

evolve in the neutral part; at *=  , all the cohesive crack is active; during the second part of the loading phase, * < < 2  , all 

the cohesive crack is active, both the tip of the cohesive crack and the tip of the non cohesive crack propagate; at = 2 , the tip of 

the non active crack is at   and the length of the cohesive crack is 0D  again. 
  

The small scale problem: determination of U0, 0 and D0 
At small scale and at = 0 , the non cohesive crack is the half-line < 0x  whereas the process zone is an interval of 

length 0D :    
 

0 0 0 0 0
D C B= ( ,0) {0}, = (0, ) {0}, = [ , ) {0}.D D         

 

We search the solution such that all the process zone is active (and open) at the end of each loading phase,  i.e.  
0 0
Ca C=  . The checking of this hypothesis needs to determine the evolution of the displacement field U  during a cycle. 

That will be made in the next subsections. Accordingly, 0U  and 0  are such that    
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0 0 0 0 0 0
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= 0, = U 2 (U ) in \( , ) {0}

= 0 on , = on , on

.
0 on , 0 on , = 0 on

K
U ( cos , sin ) ( ) = 0lim

2 2

c c

S

r

div D

U U U

r
r r

 

 

  
 

     


       


     


  

     

div I

e e e

u

               



 (31) 

 

The set of equations (31) constitutes a generic problem treated in the Appendix A with parameters L = 0 , 0D = D  and 

IK = K . Thus, the stress intensity factor IK  plays the role of the intensity of the loading for the small scale problem. 

Since the normal stress is bounded by c  on 0
B  and because of the non interpenetration condition, there is no 

singularity at the tip 0=x D  of the process zone and therefore the length of the process zone is related to IK  by    
 

2
0 I

2 2 2

K G
= = .

8 8(1 )c c

E
D

 
            

(32) 

 
Moreover the jump of the normal displacement on the crack line is given by    
 

0
2 0

G
( ) =

c

x
U x V

D 
 
 
 

   
        

 (33) 

 

where V  is given by (55) and G  denotes the rescaled potential energy release rate, see (23). The normal stress on 0
B  is 

given by  
 

0
0
22

2
( ,0) = 1 arcsin 1 .c

D
x

x




 
    

 
 

 

The non interpenetration condition and the yield stress condition are hence satisfied.  
 

The small scale problem:  determination of U ,  , L  and D when 0 < 1    
During the unloading phase of the cycle, the stress intensity factor decreases to 0: I IK = (1 )K  . We search a solution 
such that neither the non cohesive zone nor the process zone propagate. However, the process zone will become 
progressively passive. Specifically, we search a solution such that    
 

0 0
Cp p Cn p= 0, = , = (0, ) {0}, = ( , ) {0}L D D D D D          

 

with pD
  growing from 0 to 0D . Accordingly, U  and   have to satisfy the following conditions on the crack 

line:    

22 22 22 22

D Cp Cn B0 0
2 2 2 2 2 2

= 0 = 0 0
, on , on , on .

0 0 = = 0

c c
on

U U U U U U

   
   

   

                   
        

                                 
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Setting 0U = U U   and 0=    , the pair (U , )   is solution of the generic problem of Appendix A with 

parameters IK = K , L = 0  and pD = D . Moreover   and U  must be such that 220 c
     on Cn

  and 

2 0U      on Cp
 . (Note that the condition 2 0U      is not due to the non interpenetration condition but to the 

decrease of the opening during the unloading phase.) Therefore, there is no singularity at the tip of the neutral zone, its 

position is given by 2 0
p =D D   and grows from 0 to 0D  during the unloading phase. The jump of the normal 

displacement on the crack line is given by    
 

2
2 0 2 0

G
( ) =

c

x x
U x V V

D D
 

 
        

    
           (34) 

  
while the normal stress on the neutral zone and the bonded zone is given by    

 
2 0

2 0 0

22 2 0 0
0

2
arcsin 1 if

( ,0) = .
2

arcsin 1 arcsin 1 if

c

c

D
D x D

x
x

D D
x D

x x



 






  


          

 

 (35) 

 

Let us now verify all the required conditions for U  and  . First, 0 0
0(U , ) = (U , )lim

 
   . Second, since V  is 

strictly decreasing on [0,1] , 2 ( ) < 0U x     when 2 00 < <x D , in conformity with the definition of Cp
 . Third, since 

V  is concave on ( ,0)  with (0) = 1V , we have ( ) ( ) (1 ) (0) 0V V V        for 0   and 0 < 1  ; hence 

(34) yields 2 ( ) 0U x      when 0x  . Since V  is decreasing and positive on [0,1] , we have ( ) ( ) ( )V V V      

for 0 1   and 0 < 1  ; hence (34) yields 2 ( ) 0U x      when 2 00 x D  . Therefore, the non interpenetration 

condition is satisfied everywhere. Finally, it is immediate from (35) that 220 ( ,0) cx     when 2 0x D . All the 

conditions are satisfied by U  and  . 

When 1  , all the process zone becomes passive, the length of the neutral zone 2 0(1 )D  tends to 0. We can see in 

(35) (or in Fig. 4) that 1 22 ( ,0) = 0lim x
   for all x . Since ( ) = 2 (1)V o    when    , (34) gives that 

1 2 ( ) = 0lim U x

     for all x  (see also Fig. 4). Therefore, defining 1 1(U , )  as the limit of (U , )   when 1  , we 

have 1U = 0  and 1 = 0 .  
 

Remark 6  Since 2 ( )U x     decreases as   increases from 0 to 1, the cumulated opening does not evolve during the unloading phase, 

0=  . Moreover, at the end of the unloading phase, all the crack is closed and free of any contact or cohesive force. Note that 1 1(U , )   

are defined by passage to the limit when 1  . We shall see that 2U
     is not defined at =1  because of the change of the sense of 

loading, only the left and the right derivatives are defined. It is the same at = 2 . Accordingly, one should modify the definition of active, 

passive or neutral zones at these times by considering the left derivative of 2U
     (rather than the right derivative for causality reasons). With 

this new definition, one can prove that 1U = 0  and 1 = 0  and hence their left-continuity at =1 .  
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Figure  5:   Evolution of the opening and of the normal stress during the unloading phase of a cycle. Note the growth of the passive 
zone.  

   

The small scale problem:  determination of U , S  and D when 1 < 2   

During the loading phase of the cycle, the stress intensity factor increases: I IK = ( 1)K   . At =1  the crack is closed 
and the process zone is passive. The process zone becomes progressively active and the non cohesive crack tip 

propagates. Beyond a certain time * , all the process zone is active and the tip of the process zone propagates. Thus, 

assuming that L  is known and continuously increasing with  , we search a solution such that the loading phase itself is 
divided into two parts as follows:   

    1.   First part of the loading phase: 0=D D L  , Ca a= ( , ) {0}L L D      , 0
Cn a= ( , ) {0}L D D     ;  

    2.   Second part of the loading phase: C Ca= = ( , ) {0}L L D        .  

 In both parts, U  and   have to satisfy the following conditions on the crack line:    
 

22 22 a 2 a( ,0) = 0 if < , ( ,0) = if < < , ( ) = 0 ifcx x L x L x L D U x x L D                 

 

With the convention that a =D D   during the second part. Therefore, the pair (U , )   is solution of the generic 

problem of Appendix A with parameters IK = ( 1)K  , L = L  and aD = D . Moreover   must be such that 

220 c
     on Cn

  and 22 c
    on B

 , whereas U  must satisfy the non interpenetration condition. Hence, there 

is no singularity at a=x L D  , aD
  is given by 2 0

a = ( 1)D D    and grows continuously from 0 to 0D  during the 
loading phase. The jump of the normal displacement on the crack line is given by    
 

2

2 2 0

( 1) G
( ) =

( 1) c

x L
U x V

D


 

 
  
  

           (36) 

 

while the normal stress on the neutral zone and the bonded zone is given by    
 

2 0
2 0

22

2 ( 1)
( ,0) = 1 arcsin 1 if ( 1) .c

D
x x L D

x L
 



 


 
        

 

Since V  is strictly decreasing on [0,1]  and provided that L   is continuously increasing, 2 ( )U x     is defined and 

positive for 2 0( , ( 1) )x L L D     , in conformity with the definition of Ca
 . Furthermore, the non interpenetration 

condition and the yield stress condition are ensured. The time *  when the first part of the loading phase finishes is such 

that 
* * 2 0 0( 1) =L D D   . Provided that L  grows continuously when   grows from 1 to 2, since 1 = 0L , there 
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exists a unique *  satisfying this condition. Since ( ) = 2 (1)V o    when    , one gets 

0(U , ) = ( , )lim
 

  0 0  and hence the continuity at =1 . Provided that 2 =lim L
 , it is easy to check that 

2 2
2(U , ) = (U , )lim

 
    with 2 2(U , )  related to 0 0(U , )  by the stationary conditions (26).  

 

Remark 7 At this stage, provided that L   is continuously increasing on [1, 2]  from 0 to  , we have found U   and S  in terms of 

L  which satisfy all the requirements for [0, 2] . It remains to find  , 0  and L ,   for (1, 2) , then, to verify that 

L   and    are continuous at = 1  and = 2 .  
  

The small scale problem:  determination of 0  and   

By definition and Hypothesis  H1, 
2 1

( ) >
N

cs d 
 for <s   and 

2 1
( ) <

N

cs d 
 for >s  . Hence, if we assume that 

2 1N 
 is continuous at =s  , we have 

2 1
( ) =

N

cd
   . Using (24) and (25), we get    

 
0 (0) = .cL            (37) 

 
By definition (7) of the cumulated opening, since the opening does not increase during the unloading phases and does not 
decrease during the loading phases, since the opening vanishes at the end of an unloading phase and by virtue of the 
stationary conditions (26), we have  

 

 00 2 2 0 1
2 2 22

( ) = ( ) ( ) = ( ) ( ) ( )x x U x d x U x U x 


  


                       

0 0
2= ( ) ( ).x U x    

 

Then, by induction, since 0 ( ) = 0x  for 0x D , we get 0 0
2=0

( ) = ( )
i

x U x i


       . Note that this series contains a 

priori an infinite number of terms because the micro-number of cycles needed to compute 0 ( )x  depends on x  and  , 

and can tend to infinity when   goes to 0. Using (33) we finally obtain    

 

0
0

=0

G
( ) =

i c

x i
x V

D 

  
  

 



         (38) 

  

with 0D  given by (32). Inserting this expression for 0 (0)  into (37) gives the desired equation for  :    

 

0
=0

G = .c c
i

i
V L
D


  

 
 




          (39) 

 

This equation will be rewritten and interpreted in the next section by reintroducing the true physical quantities instead of 

the rescaled ones. Let us analyze here the conditions for the existence and the uniqueness of a solution   in terms of G . 
According to whether G  is greater than, equal to or less than c cL  there exists no solution, an infinite number of 

solutions or a unique solution for   as it is proved below.   

1.   If G > c cL , then there exists no solution for  . 

Indeed, since 0V   and (0) = 1V , 0

=0
( / )G G > c ci
V i D L

   for all  .  

2.   If G = c cL , then all the solutions are the  's such that 
2

:=
8(1 )

c
m

c

EL
 




   . 
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Indeed, in such a case, (39) becomes 
=0

( / ) = 1mi
V i

    . Since (0) = 1V , it reads also as 
=1

( / ) = 0mi
V i

    . 

Since 0V   everywhere and = 0V  only on [1, ) , we must have ( / ) = 0mV     and hence m   . 

Conversely, if m   , then ( / ) = 0mV i    for every 1i   and hence   is solution. 

3.   If 0 < G < c cL , then there exists a unique solution = (G) > 0f . 

Indeed, let us consider the function 0

=0
( ) := ( / )G

i
F V i D    defined for 0  . Since (0) = 1V , then 

(0) =F  . Since ( ) = 0V   for 1  , then ( ) = G < c cF L   for every 0D  . When 00 < < D , we 

have 0 0

=2
( ) = (1 ( / ))G ( / )G

i
F V D V i D  

  . Since V  is decreasing on [0,1]  and vanishes on 

[1, ) , then ( )F   decreases from infinity to G  as   goes from 0 to 0D . Therefore, there exists a unique   

such that ( ) = c cF L . Moreover, 0(0, )D .  

The precise dependence of   on G  will be studied in the next section. Let us make the last Hypothesis, which contains 
Hypothesis  H5,   
 

H6: 0 < G < c cL .  
 

In such a case, there exists a unique   and 0  is given by (38). Since V  is continuously differentiable, non increasing and 

non negative, so is 0 . Moreover, since V  is decreasing on ( ,1]  and vanishes on [1, ) , 0  is decreasing on 
0( , ]D  and vanishes on 0[ , )D  . Accordingly, we have 0 > cL  on 0

D , 00 < < cL  on 0
C  and 0 = 0  on 

0
B , as it is required. 

 

The small scale problem: determination of   and L  when 1< < 2  

As before, if we assume that ( )x x  is continuous, then L  is such that    
 

( ) = .cL L             (40) 
 

By definition (7) of the cumulated opening, since the opening does not decrease during the loading phase and since the 
opening vanishes at = 1 , we have    
 

 1 0
2 21

( ) = ( ) ( ) = ( ) ( ).tx x U x dt x U x
 

                    (41) 
 

Inserting this expression for ( )L   into (40) and using (36) lead to the following equation for L :    
 

0 2( ) ( 1) G = 0.c c cL L       
 

Let us set 0 2( , ) := ( ) ( 1) Gc c cF x x L        and remark that ( , )F x   decreases from infinity to 
2( 1) G c cL    when x  goes from   to 0D , then remains constant for 0x D . Therefore, since by Hypothesis  

H6 2( 1) G < c cL  , there exists a unique L  such that ( , ) = 0F L  . Since 0 (0) = cL , then (0, ) > 0F   and 

hence 0(0, )L D  . Since F  is an increasing function of   at given x  and since 0  is decreasing on 0(0, )D , 
0 ( )L  decreases and hence L  increases when   is increasing. Moreover, since V  is continuously differentiable on 

0[0, ]D , L   is continuous on [1, 2]  and continuously differentiable on (1, 2) . Therefore, L  grows continuously 

from 0 to   during the loading phases. From (41) and by virtue of the continuity of U   at = 2 , we get 
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0 2 2
2 2( ) = ( ) ( ) = ( )lim x x U x x

         and hence the continuity of    at = 2 . Since 0 2 = 0lim U 

    , 

we have also the continuity of    at = 1 . 

Note that the right derivative of 2 ( )U x      at =1  is positive for < 0x , while its left derivative is negative for 

0<x D . Hence 2 ( )U x       is not differentiable at =1 . In a similar way, 2 ( )U x      is not differentiable at 

= 0  or 2 . Its right derivative at = 0  is negative for < 0x . Its left derivative at = 2  is positive for 0<x D    

and hence its left derivative at = 0  is positive for 0<x D . Partitioning the process zone by the sign of the left 
derivative of the opening (see Remark 6), we obtain that all the process zone is active at = 0  as it was assumed. 

It remains to verify that the dependence of   on x  is consistent with the definitions of the three interval B
 , C

  and 

D
 . Using (41) with (36) and (38), it appears that   is decreasing on ( , ]L D    because 2U

     is decreasing on 

a( , ]L D    and not increasing otherwise, because 0  is decreasing on 0( , ]D  and not increasing otherwise, and 

because 0
a= max{ , }L D D L D     . Since, by construction, ( ) = cL L   and ( ) = 0L D    , we have 

> cL
  on D

 , 0 < < cL
  on C

  and = 0  on B
  as required.  

 

 
Figure  6:   Evolution of the cumulated opening and of the different zones (non cohesive zone, active zone and process zone) during 

the loading phase of a cycle when / 0.636cG G   (then 0= / 3D ). Note the two parts of the evolution: the first 

( * 1.878   ) when the tip of the process zone does not move and the second ( *>  ) when both tips propagate  
  

 
Figure 7: Evolution of the opening and of the normal stress during the loading phase of a cycle when / = 0.636cG G  (then 

0= / 3D ). Note the growth of the active zone.  
 
Remark 8 Provided that Hypothesis  H6 holds, we have constructed a (smooth) solution for the small scale problem which satisfies the set of 

conditions (29), see Figs. 4, 5 and 6 where are plotted the evolution of 2U
    , 22

 ,  , L  and L D   with   when 
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/ = G / 0.636c c cG G L  . Of course, since no uniqueness result is available, another solution could exist (even in the restricted 
framework where it was searched). However, the present solution does depend on the large scale problem only through the stress intensity factor 
and hence can be considered as a universal solution for a crack in mode I in an homogeneous isotropic linear elastic material under a simple cyclic 
loading.  

 
A posteriori verification of the  a priori Hypotheses 
To finish this construction of the solution for the evolution problem it remains to check that the  a priori assumptions are 
really satisfied. We reintroduce   into the notations. The verification consists in the following procedure. 
First, make the following computations:    

I.  Compute [ ]u  , IK [ ] , IIK [ ] , G[ ]  and [ ]Ru   for every [0, )cL  by solving (21);  

II.  Compute = (G)f  for every G (0, )c cL  by solving (39).  

Then proceed to the two following verifications:    
(i)  For every [0, )cL , verify that IIK [ ] = 0 , that 0 < G[ ] < c cL  and that there exists no other singular 

point than ˆ ( )x   on ̂ ;  

(ii) Verify that the ordinary differential equation = (G[ ])
d

f
dT

   with the initial condition (0) = 0  has a unique 

solution ( )T T  .  
Both verifications have a global character and depend on the geometry and on the loading. They can be non satisfied for 
multiple reasons, for instance:    

(a) It can happen that the process of fatigue never starts because there is not or not sufficient stress concentration 
in the uncracked body. In such a case G[0] = 0  and ( ) = 0T  for all 0T   is solution of the differential equation. That 
means that the nucleation of a crack under cyclic loading requires a specific study (which is outside the scope of our 
paper);  

(b)  It can happen that the propagation of the crack becomes ``unstable" in the sense that the energy release rate 
becomes larger than cG . In such a case, the propagation of the crack is no more governed by the fatigue law (but it can 
still be governed by the evolution problem of Subsection 2.2);  

(c)  It can happen that several crack tips propagate simultaneously.  
If they are satisfied then it is possible to construct an approximate solution for the evolution problem as follows 
( = /c cd L  is fixed):    

    1.  Let > 0t . Define N  as the integer part of ( 1) / 2t  , = 1 2t N    and =T N ;  

    2.  Set ( )T  as the solution of the differential equation = (G[ ])
d

f
dT

   at T ;  

    3.  Compute U ,  , D  and L  for every [0, 2)  at the given T  (they depend on ( ))T ;  

    4.  Define tu , t  and dt  by    
 

( ) = ( 1) [ ( )] ( ) U ( , ), d = , = ( )t R t tT x y D T L         u x u x    
 
where  

 

3

ˆ1
= ( ( ( ))), = ( ( )), = .

d
x y T T

ds
  

x
t n x x t n e t   

 
Then all the hypotheses  H1--H6 are satisfied. (Of course, this is not an exact solution because its construction comes 
from a separation of scales.) 
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PROPERTIES OF THE FATIGUE LAW AND ITS DEPENDENCE ON THE COHESIVE MODEL AND THE LOADING 

  
The fatigue law corresponding to Dugdale's model, cumulated opening and simple cycle in mode I 

et us reintroduce the real physical quantities instead of the rescaled ones:   denoting the position of the tip of the 
non cohesive crack, d  the current length of the process zone and G  the energy release rate at the end of the 

loading phase of the cycle N , we have 0d = D  and = G[ ]G   . If we use the classical notations of engineers 

and denote by 
d

dN


 the increment of the length of the non cohesive crack during a cycle, we get =

d

dN
  . Accordingly, 

(39) becomes    
 

2
=0

= 1 d = .
d 8(1 ) c

i c c c

i d G E G
V with d

dN G G


 

  
   

 
      (42) 

 
The properties of this equation already obtained in Subsection 3.3.5 can be rephrazed and reinterpreted as follows:   

1.  If > cG G , then there is no solution for (42);  

2.  If = cG G , then the solutions for (42) are all the /d dN  greater than or equal to 
28(1 )
c

c

Ed
 

;  

3.  If 0 < < cG G , then there exists a unique solution for (42) and it can read as    

 

2
= f ( ) .

8(1 ) c
c c

d E G
d

dN G


 


         (43) 

  

In other words, we obtain the same property as in Griffith's law: the energy release rate cannot be greater than cG  and the 

growth rate of the crack is undetermined when the energy release rate is equal to cG . That means that the propagation of 

the crack during a cycle is no more of the order of cd  if the energy release rate becomes greater than cG  at the end of the 
loading phase. The propagation is no more governed by fatigue concepts. That corresponds to situation where the 
propagation is ``brutal", that is discontinuous in time. On the other hand, if the energy release rate at the end of the 
loading phase of a cycle is less than cG , then the crack propagates progressively from one cycle to the other (whereas 
there is no propagation with Griffith's law). The presence of this subcritical regime is due to the introduction of cohesive 
forces and of the cumulated opening concept into the model. 
Let us establish additional properties for the function f .   

P1 f  is a dimensionless function, defined on (0,1) , continuously differentiable, increasing from 0 to 1, see Fig. 7.  

P2 For small values of = / cg G G , we have 2 2f ( ) = / 3 ( )g g o g  and the fatigue law is like a Paris' law with exponent 4 in terms 
of the stress intensity factor:    

 
2

2
.

24(1 ) c
c c

d E G
d

dN G


 

 
    


        (44) 

  

Let us prove  P1. Setting 
=0

( , ) = 1 ( / )
i

F f g gV if g


   for 0f   and (0,1]g , (42) reads then as 

(f ( ), ) = 0F g g  with = / cg G G . The regularity of f  on (0,1)  is a direct consequence of the implicit function 

theorem, V  being continuously differentiable and 0V    on (0,1) . Since F  is an increasing function of g  at fixed f  

and since ( , )f F f g  decreases from infinity to 1 < 0g   when f  goes from 0  to g , f ( )g g  is increasing 

L 
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and 0 < f ( ) <g g . Hence 0f ( ) = 0limg g . Since 
=1

( ,1) = ( )
i

F f V if
 , ( ,1) > 0F f  if < 1f  and ( ,1) = 0F f  if 

1f  . Hence 1f ( ) = 1limg g  which completes  P1. 

Let us prove  P2. We know by  P1 that 0f ( ) = 0limg g . Let ( )n g  be the integer part of / f ( )g g . Since 
( )

=0
( f ( ) / ) = 1

n g

i
gV i g g , we have 0 ( ) =limg n g   and 0 ( )f ( ) / = 1limg n g g g . Therefore  

  
( ) 1

2 00 0 =0

f ( ) 1 1
= ( ) = ( ) =lim lim

( ) ( ) 3

n g

g g i

g i
V V d

g n g n g
 

 
 

 
 

and the result follows. 
The fatigue law depends on the choice of the surface energy density (here, Dugdale's law), on the choice of the memory 
variable and more generally of the irreversibility condition (here, the cumulated opening) and on the type of cyclic loading 
(here, mode I simple cycle). In the next subsections, we show what happens if one of these parameters changes.  

 
Influence of the type of cyclic loading: cycles with partial unloading 
Let us consider a cyclic loading with period 2 where the rescaled stress intensity factor of the large scale problem oscillates 

between m
IK > 0  and M m

I IK > K , see Fig. 8. We can follow the same procedure as in the case of a simple cyclic loading 
to obtain the fatigue law. Let us simply give the main steps by emphasizing the changes in comparison with the simple 
cycle case.  
 

 
Figure 8: Graph of the function f  giving the fatigue law.  

 
All the process zone is active at the end of the loading phase, the solution of the small scale problem at = 0  is 

unchanged, 0
2U     and 0D  are still given by (32) and (33) with M

I IK = K :    

M2 M M
0 0I

22 2 2 0

K G G
= = , ( ) = .

8 8(1 )c c c

E x
D U x V

D

 
   

 
   

         (45) 

 

At the end of the unloading phase, since m
IK > 0 , only a part of the process zone is passive, the remaining part being 

neutral. The solution of the small scale problem at =1  is the same as the one found in Subsection 3.3.3 at 
m M
I I= 1 K / K   with M

I IK = K . Therefore, we get    
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M
1 2
2 0 2 0

G
( ) = (1 )

(1 ) c

x x
U x V V

D D


 
             

          (46) 

 

 where m M
I I= K / K . During the unloading phase the opening is non increasing, 2 0U     , while during the loading 

phase the opening is non decreasing, 2 0U     . Accordingly, the cumulated opening is such that  

 

 00 2 2 0 1
2 2 22

( ) = ( ) ( ) = ( ) ( ) ( )x x U x d x U x U x 


  


                       

0 0 1
2 2= ( ) ( ) ( ).x U x U x                 

 

By induction we obtain  
 

0 0 1
2 2

=0 =1

( ) = ( ) ( ).
i i

x U x i U x i
 

                 

 

Using (45) and (46) the condition 0 (0) = cL  giving the equation for   becomes  

 

2 M M
2 0

=1

(1 ) G = G .
(1 ) c c

i

i
V L

D
 



  
   




 

 

Reintroducing the true physical quantities, we finally obtain the following equation for /d dN :    

 

2 2
2

=0

(1 ) = 1 (2 )
(1 ) d

M M

i c c

i d G G
V

dN G G
  



  
    

 
     (47) 

  

where  

 

2
2

2
d = , = (1 ) , = ,

8(1 )

M mM
M I I

c M
c c I

K KE G
d G

G E K

  
 




 

 

m
IK  and M

IK  being the real stress intensity factors at the end of the loading phase and the unloading phase, respectively. 

As is the case of a simple cycle, this equation admits a unique (positive) solution if and only if 0 < <M
cG G . Now, the 

solution /d dN  depends both on the maximal energy release rate MG  and on = M m
I I IK K K  . Specifically, using 

the function f  defined in (43) we get   
  

2

2 2 2

(1 )
= f .

8(1 ) (2 ) (2 )

M
c

cM M
c c c

Gd E G
d

dN G G G G

 
     

 
      


    (48) 

 
 

When the amplitude of the cycle is small,  i.e.  when   is close to 1, we obtain    
 

4 2

2 2 2 3

( )

24(1 ) ( ( ) )
I Ic

cM
c Ic I

K Kd E
d

dN K K


 




 


       
(49) 

 

where IcK  denotes the toughness,  i.e.  2 2= (1 ) /c IcG K E . The dependence on the amplitude and on the maximal 

value of the stress intensity factor is explicit. If, furthermore, M
IK  is small in comparison with IcK , we recover the usual 

Paris' law with the exponent 4, see [34]:    
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4

2
.

24(1 )
I

c
c Ic

Kd E
d

dN K


 

 
    


        (50) 

  
Influence of the memory variable: cumulated tearing in mode III 
In mode III, since there is no opening, the non interpenetration condition is automatically satisfied but the cumulated 
opening is no more a memory variable. A possible candidate is the cumulated tearing  

 

30
( ) = ( )

tt ts u s dt        
 

where 3
tu  denotes the anti-plane component of the displacement field at time t . Thus, the cumulated tearing evolves as 

soon as the anti-plane displacement changes, whatever the sign of its rate. Let us still consider Dugdale's surface energy 
density ( ) = min{ , }c cG     where c  denotes the critical shear stress and 3= i in   is the shear stress on the crack 
lip. Following the same variational procedure as in Subsection 2.2, the shear stress-cumulated tearing conditions read as   
 

 3 CaB

D Cn

= onon

,

= 0 on on

t t tt t
cc

t t t t
c

sign u  

  

  
 

 
     

   
 

 

with    
 

Ca 3B

D Cn 3

ˆˆ = { :0 < ( ) < , ( ) 0}= { : ( ) = 0}

,

ˆ ˆ= { : ( ) > } = { :0 < ( ) < , ( ) = 0}

t t tt t
c

t t t t t
c c

s s d u ss s

s s d s s d u s



 

     
 
     

   

   

 

 

and = /c c cd G  . There does not exist a passive zone inside the process zone. Let us consider symmetric cyclic loading  i.e.  a 

proportional loading such that the seesaw function   is the periodic function with period 2 defined on [ 1,1]  by 

( ) = 1 2t t  , see Fig. 9. 

 
Figure 9: Non simple cyclic loading: the rescaled stress intensity factor IK  oscillates between m

IK  and M
IK  (the true one 

I= KIK  ).  
 
Assuming that c cd L , we can again follow the two-scale approach to obtain the fatigue law giving the growth rate of 

the non cohesive crack /d dN  at each cycle in terms of the maximal mode III stress intensity factor IIIK  (or 

equivalently the maximal energy release rate during the cycle). We simply report here the main results, see [2] for details. 
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The size d  of the process zone C  is such that there is no singularity at the tip of the process zone, d  is of the order of 

cd  and given by    
 

2

d = with = .
4 2

III
c

c c

KG
d G

G

 
 

 

 

 
 

Figure 10: Symmetric cyclic loading used in mode III. 
 
The cumulated tearing is equal to cd  at the tip of the non cohesive crack D . That yields the equation for /d dN  
which reads as    

 

=1

1 = 2
2dic c

G G i d
V

G G dN

    
 

 
 

 

where V  is still given by (55). This equation enjoys the same properties as (43): there exists no solution if > cG G , an 

infinite number of solutions if = cG G  and a unique solution if 0 < < cG G . In this latter case the solution can read as    
 

2
= 1 f

4 c
c c c

d G G
d

dN G G G

 

   
      


 

 

where f  is the function defined in (43). When / cG G  is small, we recover a Paris law with the exponent 4 in terms of the 
stress intensity factor:    

 

2( ) .
3 c

c c

d G
d

dN G

 





 

 
The constant multiplier differs from that of the mode I case with simple cyclic loading.  
 
Influence of the surface energy density 
If we replace Dugdale's surface energy density by a more general, Barenblatt's type, surface energy density, we loose the 
advantage of explicitely constructing the fatigue law. Indeed, in general, it is no more possible to obtain the solution of the 
small scale problem in a closed form. Moreover the concept of non cohesive crack is not necessarily meaningful, at least at 
a small scale. Indeed if   is always increasing with > 0 , then the cohesive forces never vanish. It is the case for 

example when ( ) = (1 exp( / ))c cG d    . In such a case, the two-scale approach must be refined. This is outside the 
scope of the present paper and will the subject of future works, see however [1] and [19] for some preliminary results in 
this context. 
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CONCLUDING REMARKS AND PERSPECTIVES 
 

he construction of the fatigue law proposed in Section 3 is based on a separation of scales in space and time which 
is licit provided that the characteristic length of the material is small by comparison to any characteristic length of 
the body. The small scale problem consists in determining the stationary regime governing the evolution of the 

crack and of the process zone during one cycle of loading with the effective stress intensity factor as the loading 
parameter. This problem has a universal character since it depends neither on the geometry of the body, neither of the 
crack path nor of the boundary conditions. Therefore the resulting fatigue law is characteristic of the material properties 
(including its bulk behavior and the cohesive model) for a given type of cyclic loading. In the case of a linear elastic 
material with a Dugdale-type surface energy depending only on the cumulated opening, we have obtained a Paris-type 

fatigue law which is approximatively a power law like 4
I/ = Kd dN C  for small values of IK . An interesting task will 

be to understand the origin of this exponent 4 and to obtain other exponents by changing the surface energy, the loading-
unloading condition or the bulk behavior of the material. Another important issue is to see how one could account for the 
concept of fatigue threshold from cohesive models. Among all possible developments of our approach, let us cite the 
most exciting: (i) to study the nucleation of a crack by fatigue; (ii) to study the effect of an overloading; (iii) to study the 
influence of different sequences of loading; (iv) to construct fatigue law under mixed mode conditions.  
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APPENDIX:  THE GENERIC PROBLEM IN THE NEIGHBORHOOD OF THE CRACK TIP 
 

he plane is equipped with the cartesian coordinate system ( , )x y , the associated canonical basis is ( , )i j  and 

= iz x y  denotes the affixe of the complex number associated with the point ( , )x y . Let K , L  and D  be 

three given real numbers with K > 0  and D > 0 . Let us consider the following plane-strain elastic problem 
whose unknowns are the displacement and stress field U  and  :    

 
2= 0, = U 2 (U) \ ( ,L D) {0},div in      div I   

   

12 22 12 22= = 0 on ( ,L) {0}, = 0, = on (L,L D) {0},c         
 
with the condition at infinity    
 

K
U( , ) ( ) = 0lim

2 2
S

r

r
x y 

 

 
  

 
u  

where = cosx r  , = siny r   and ( ) = (3 4 cos ) cos sin
2 2

S         
 

u i j . This problem admits a unique 

solution which can be obtained in a closed form by using the theory of complex potentials, cf [26]. We simply recall here 
the main results.  

 
   

 
 

Figure 11: Data of the generic small scale problem. 
  

The fields U  et   are related to the function ( )z  of the complex variable z  by  

T 
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22 12( , ) i ( , ) = ( ) ( ) ( ) ( ),x y x y z z z z z           
 

1 22 ( ( , ) i ( , )) = (3 4 ) ( ) ( ) ( ) ( ),U x y U x y z z z z z          
 
  being holomorphic in the plane without the half-line ( ,L D) {0}   , the bar denoting the complex conjugate. By 
a standard procedure, we get    

  

L D

L

L D K
( ) = .

2 L D 2 2 ( L D)
c x

z dx
x zz z


 

   
        (51) 

 
 Near the tip = L Dz  , ( )z  behaves like  

 

2 K 4 D
( )

4 L D
cz

z

 


 
 

 

 

and hence the stresses are singular with the usual singularity in 1/ r  except if the factor 2 K 4 Dc   vanishes. 

Specifically, the jump of the normal displacement just behind the tip = L Dx   and the normal stress just ahead the tip 
read as  

 
2

2 22

2 K 4 D2(1 )
( ) = ( 2 K 4 D) , ( ) = .

4
c

cU r r r
E r

   
 


    

 
 

Therefore, if it is required that 22 c   on the half-line (L D, ) {0}   , then K  and D  must be such that 

2 K 4 Dc  . On the other hand, if it is required that  2 0U   holds everywhere (by a non interpenetration 

condition, for instance), then K  and D  must satisfy the converse inequality 2 K 4 Dc  . Accordingly, in order 

that both conditions are satisfied, the solution must be non singular at the tip L D . In such a case D  and K  are 
related by    
 

D
K = 4 .

2c 
           (52) 

 

Assuming from now on that (52) holds, (51) becomes    
 

    i
'( ) = D i L D D i L D .

2 2
c cz Log z Log z

 


           (53) 

 

In (53), Log  denotes the principal determination of the complex logarithm. After some calculations, one obtains that the 
normal jump of the displacement along the x -axis reads as    

 

 
2

2

L 8(1 )
( ) = D,

D
cx

U x V
E




  
 
 

        (54) 

 

 where V  denotes the dimensionless real-valued function defined by    
 

1 ln(1 1 ) ln if 1, 0
( ) =

0 if 1
V

      




       



   (55) 



 

                                                                             J.-J. Marigo et alii, Cassino (FR), Italia, 13-15 Giugno 2011; ISBN 978-88-95940-36-6 
 

33 
 

 
 and (0) = 1V . Let us note that V  is continuously differentiable everywhere (even at = 0  and = 1 ), is concave for 

0   and is strictly decreasing from   to 0 when   goes from   to 1. When    , ( ) = 2 (1)V o   . 

The non interpenetration condition 2 0U   is satisfied everywhere. The normal stress 22  along the half-line 

(L D, ) {0}    is given by    

 

22

2 D
( ,0) = 1 arcsin 1 .

L cx
x




 
     

       (56) 

 

 It decreases from c  to 0 and, therefore, the condition 22 c   is satisfied.  
 

    
Figure 12: Graphs of the normal stress and of the function V  giving the jump of the normal displacement on the crack path. 

 
 
GLOSSARY 

   
( , )x y The local cartesian coordinates at the tip of the crack   

D The rescaled length of the cohesive crack zone at the shifted time    

L The position of the non cohesive crack tip in the local coordinates at the shifted time     
N The number of cycles needed so that the length of the non cohesive crack be    

T The rescaled macro-number of cycles   

( )x The cumulated opening of the crack near its tip at the shifted time   and at point x   

Ft Prescribed surface forces on F   at time t    

FThe normalized given surface forces on F    

G[ ] The apparent potential energy release rate when the crack length is   and the data are (f , F, )   

B
t The still bonded part of the crack path at time t  (where the cumulated opening vanishes)   

Ca
t The active part of C

t  (where the opening rate is positive)  

Cn
t The neutral part of C

t  (where the opening rate vanishes)   

Cp
t The passive part of C

t  (where the opening rate is negative)   

C
t The cohesive part of the crack path at time t  (where the cumulated opening is positive but less than cd )   
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D
t The debonded part of the crack path at time t  (where the cumulated opening is greater than cd )   

a
t The active part of the crack path at time t  (where the opening rate is positive)   

cG The critical energy release rate  

c
t The closed part of the crack path at time t  (where the opening vanishes)   

n
t The neutral part of the crack path at time t  (where the opening rate vanishes)   

o
t The open part of the crack path at time t  (where the opening is positive)   

p
t The passive part of the crack path at time t  (where the opening rate is negative)   

IK [ ] The apparent mode I stress intensity factor at the macro-scale when the crack length is   and the data are 

(f , F, )    

 cL Total length of the crack path  

 U ,  The displacement and stress fields near the tip of the crack at the shifted time     

  The normalized given displacement on D     

 t Prescribed displacements on D   at time t    

 cd The characteristic length in Dugdale model   

 ( )t s The cumulated opening at time t  and point of the crack path with arclength s    

 t The length of the non cohesive part of the crack path at time t   
  The ratio /c cd L    

 f t Prescribed body forces at time t    
 f The normalized body forces   
 f The normalized function entering in the Paris-like fatigue law   
 ˆ ( )x  Position of the tip of the non cohesive crack when its length is     

t
nu

    The opening rate,  i.e.  the time derivative of t
nu

       

t
nu    The opening,  i.e.  the normal jump of the displacement across ̂  at time t    

dt The length of the cohesive part of the crack path at time t    
 The growth of the non cohesive crack at each cycle   
 The seesaw periodic function   
( ), ( )t n  Unit tangential and normal vectors to the crack path at ( )x     

( )S u The classical angular dependence of the singular part of the displacement field at the tip of a non cohesive crack   

̂ Crack path   
 The surface energy density   

c The critical stress in Dugdale model  
t
nn Normal stress on ̂  at time t   

 The shifted time   

[ ], [ ]u s  The displacement and stress fields at the macro-scale when the crack length is   and the data are (f , F, )   

Mq The amplitude of the periodic loading   
V The normalized function giving the normal jump of the displacement across the crack line in the generic local problem   
 
 


