
 

                                                          L. Contrafatto, Convegno Nazionale IGF XX, Torino 24-26 giugno 2009; ISBN 978-88-95940-25-0 
 

131 
 

 
 
Modelling of cracks by the Strong Discontinuities Approach 

 
Loredana Contrafatto 
University of Catania, Department of Civil and Environmental Engineering, Italy, loredana.contrafatto@dica.unict.it 
 
 

 
ABSTRACT. The paper concerns a general variational derivation of all the state equations of a continuum 
medium with dissipative interfaces in the context of the Strong Discontinuities Approach. The kinematics is 
based on an enhanced enrichment displacement field, that satisfies a priori the boundary conditions and the 
continuity requirements. The variational formulation is established for a damaging material under general 
constitutive hypotheses. The numerical implementation of the strong discontinuity is developed within the 
Elements with Embedded Discontinuities method. Some considerations about the numerical implementation 
and the equilibrium condition at the interface are presented. 
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INTRODUCTION 
 

ne of the most important causes that can produce structural failure is material cracking evolving into collapse 
mechanisms. The simulation of the behaviour of structures and components with discontinuities has become an 
important research topic. The number of experimental and analytical studies has led to the conclusion that the 

cracking process in continuum media is preceded by a strain-localization phenomenon, characterized by the formation of 
strain localization zones in which damage and other inelastic effects accumulate, gradually turning into  macroscopically 
observable discontinuities or cracks. 
These phenomena can be effectively described by means of models that incorporate the kinematics of strong 
discontinuities obtained by an enrichment of the displacement field with a discontinuous term. Such models are based on 
the Strong Discontinuities Approach originally introduced in [1,2]. Different  numerical implementation of the method in 
the Finite Element Method have been proposed in the literature, that can be collected into the two classes of  Elements 
with Embedded Discontinuities [3] and eXtended Finite Element Method [4]. The main difference between the methods 
is in the approximation of the displacement field, requiring additional nodal degrees of freedom in the XFEM, while in 
EED the enrichment is element-wise and the additional degree of freedom can be condensed, so that the dimension of 
the discretized problem does not increase. It can be shown that under special choices of the enrichment variables the two 
approaches fully coincide. 
In the paper the equations ruling the problem of the enriched continuum are obtained from a generalized four-field  Hu-
Washizu variational principle. The equilibrium, compatibility and constitutive equations constitute the Euler-Lagrange 
stationarity conditions of the functional. Because of the topology of the problem, an additional equilibrium condition at 
the interface is obtained. It guarantees for the continuity of the stress across the interface. This equation is well known as 
the orthogonality condition between the stress and the enhanced deformation field. The possible choices of the 
approximations introduced in the discretized principle give raise to the different implementations of the method. Usually, 
in order to satisfy the interface equilibrium condition, a Petrov-Galerkin approximation is introduced. However the  
resulting stiffness matrix is non symmetric.  
Because of the fact that traditional discretized enrichment function usually does not satisfy at all points on the boundary 
the imposed constraint, in the paper an enhancement of  strong discontinuity kinematics is also proposed.  
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THE MODEL  
 

he paper presents a variational formulation of the equilibrium problem for a continuum   characterized by an 
elastic-plastic damaging behavior, in which the growth of interfaces S takes places. The presence of pre-assigned 
physical interfaces is also considered. The growth or the activation of an interface is ruled by a specific activation 
function, based on a cohesive fracture like criterion. In the general formulation the medium and the interface are 

ruled by different constitutive equations, defined by distinct free energy and dissipation functionals. The strong form of 
the equilibrium and compatibility conditions is presented, with special attention to the equilibrium conditions at the 
interfaces and to the satisfaction of the Dirichelet boundary conditions. Similarities and differences with respect to other 
formulations in the literature are highlighted. The obtained weak formulation allows an effective numerical 
implementation of the interface model, able to predict both the occurrence of the discontinuity and its direction; no 
tracking algorithm is introduced. 
 
Kinematics 
In [6] the classical kinematics of the Strong Discontinuities Approach is used to develop a structural model for the 
simulation of growth and propagation of interface inside a continuum medium.  
Let S be an interface embedded within a continuous body occupying the domain  Let  be a subset of 

containing the discontinuity and such that S divides  into two subdomains,  and   respectively.The normal n  

is oriented toward the interior of  The boundary of  is divided by the surface S in two parts. According to the 

position of the interface, a portion of the boundary of  can belong to the boundary of  . The geometry of the 

problem is depicted in Fig. 1. 
 

 
Figure 1:  Domain   and discontinuity surface S. 

 
Across the interface S the displacement field is discontinuous and the jump is denoted by   Su . The displacement field is 

usually given by the sum of a continuous differentiable function u  defined in  plus the function u~ , continuous and 
differentiable everywhere except on the interface S, so that the kinematics of the Strong Discontinuities is ruled by the 
following equations: 
 

 
 

 

 
 

The enhanced enrichment function )())()(()()( xxxxx SSSSS NHNMM   vanishes on the boundary of region 

 also when it falls  on the restrained boundary of   , and presents an unit jump across S. SH  is the Heaviside 
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function related to the surface S and defined on the domain   and  function   is continuous, differentiable, defined on 

  and such that it assumes the unit value on   . Function   u is a regular function on  , such that      Suu   

on S. 
The F.E. form of the discretized displacement field is given by [6] 
 

 
 

where iN  are the shape functions defining the approximation of the displacement field, iû are nodal degrees of freedom, 

and the first sum is extended over the set of all the nodes of the finite element mesh, while 
mS  is the set of the enriched 

nodes belonging to  . The domain  coincides with the band of elements that are cut by the discontinuity and the 

interpolation of function   u  is made element-wise. In this way, the nodal degrees of freedom coincide with the nodal 

displacements and the jump function can be treated as an internal variable. Function   u  is supposed to be constant 

inside the element. Function SN  plays the role of annihilating the enriched component of the displacement field on the 

restrained portion of the boundary. The presence of function SM  in discretizing the enrichment field guarantees the 
satisfaction of boundary conditions in all the possible configuration of the interface inside the bulk, as schematically 
illustrated in Fig. 2. 
 

 
Figure 2: Possible configuration of the interface S inside the domain. S intercepts or not the restrained boundary. 

 
Weak formulation 
The starting point of the weak formulation is the mixed multi-fields Hu-Washizu functional  
 

   ),,,,,,,,,~,ˆ,,,,,( , ppp sSSpppeeSSS
HW   uuut  

 

in which the enhanced displacement field u~ , the internal plastic variables  ,  S  and their conjugated internal forces  , 

S in the continuum and on the interfaces respectively are introduced. Damage is described by the kinematic and dual 

variables ),(  , ),( SS   respectively. The displacement jump is denoted by   u  and the conjugated traction on the 
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discontinuity surface S  is St . Using the previously defined kinematics of the SDA, functional HW  takes the 

expression: 

 
 

where the following additive decomposition for the kinematic variables has been assumed: 
 

 
  and d denote respectively the elastic and dissipation functional ruling the reversible and irreversible behaviour of the 
material in the bulk and on the interface S. 
By eliminating strain and kinematic internal variables  and performing appropriate Legendre transformations, the 

generalized Hellinger-Reissner functional HR  is obtained: 
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in which the constitutive conditions in the bulk and on S are already imposed. 
The optimization problem is stated as: 

 
and the equilibrium solution is given by 

 
The stationarity conditions of functional HR  give the relevant equations of the model. For instance, in the case of 
elastic medium and dissipative interfaces, vanishing the internal variables in the bulk, it follows 
 

 
 

The  weak formulation is obtained discretizing the displacement fields, resolving the internal variables at constitutive level 
and assuming linear elastic constitutive equations for the continuum. It allows an effective numerical implementation of 
the interface model able to predict both the occurrence of the discontinuity and its direction; no tracking algorithm is 
introduced. 
Among the many possible algorithmic frameworks, the one recently proposed in [5], based on the formal analogy between 
the enriched continuum and the theory of classical plasticity, has been implemented [6] in the FEAP code [7] and tested 
on benchmark numerical tests. 
The Finite Element implementation of the algorithm  is  based on the Elements with Embedded Discontinuities [3]. 
Usually the equilibrium condition at the interface is satisfied in a weak sense, leading to the classical equations of Statical 
Kinematical Optimal Nonsymmetric formulation of SDA [8], obtained under the hypotheses that the jump field    u  be 
constant and that a Petrov-Galerkin approximation of the incompatible strain is used  in the orthogonality condition 
between stresses and enhanced strain. It can be shown that, at least in principle, using the present formulation in the 
complementary form given by the Hellinger-Reissenr functional, a standard Galerkin discretisation can be used, as 
opposed to the Petrov Galerkin approach usually adopted. However in this way the equilibrium condition at the interface 
S is valid only globally and not element-wise and the interface traction can be obtained from a weighted average of the 
stress field on S. 
 
Boundary conditions 
Differently from the classical equations of Statical Kinematical Optimal Nonsymmetric formulation, a general form of the 
enhanced displacement field is proposed that allows to satisfy the Dirichelet boundary conditions. 
The displacement field  defined on the continuum   has to satisfy the Dirichlet essential conditions on the constrained 
portion of the boundary u . These conditions are usually fulfilled only at the boundary nodes which belong to the 

element defining the domain  , where the classical function   uu SM~  vanishes. In all the internal points of the 

element side laying on the border the essential conditions are not met, as it is shown in Fig. 3. 
In order to enforce natural BC's, an enhanced displacement field has been introduced as shown in section Kinematics by 

means of function SM . It can be shown that a proper definition of SM  can be obtained in the form SSS NMM  , 

being SN  a function depending on the standard shape functions of the element. For instance, in Fig. 4 it is shown the 
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definition of the enhanced enrichment function for the 4-nodes element. In the first case 14321  NNNNNS , 

in the second 41 NNNS  , in the third case 5NNS  . 
 

 
 

Figure 3: Enriched displacement field on the restrained boundary. 
 

 
 

Figure 4: Enhancement enrichment function for different boundary conditions in a four-nodes element. 
 
 
CONCLUSIONS 
 

n the paper a general variational principle based on an enhanced displacement field for modelling strong 
discontinuities in an elastic-plastic damaging medium has been presented. From the principle all the equations of the 
problem can be obtained. They represent the Euler-Lagrange stationarity conditions of a generalised Hu-Washizu 

functional. Moreover an enhancement in the definition of the enriched displacement field of the SDA has been proposed 
allowing for the satisfaction of the imposed constraint all over the restrained boundary and not only at the nodal point of 
the discretized domain. In the present context the orthogonality condition between the stress field and the  deformations 
obtained from the enhanced displacements can be exactly satisfied by a compatible kinematics in a global sense, but in 
general not locally for each element.  
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