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SOMMARIO 

Nel presente articolo si riesamina la questione relativa all’esistenza di una correlazione tra i parametri 
C and m della legge di Paris. In base all’analisi dimensionale ed ai concetti di autosomiglianza 
incompleta applicati alla fase lineare della propagazione della frattura per fatica, si propone una 
rappresentazione asintotica che mette in relazione il parametro C ad m ed alle altre variabili che 
governano il fenomeno in oggetto. Gli esponenti della correlazione vengono poi determinati in base alla 
condizione che l’instabilità alla Griffith-Irwin debba coincidere con l’instabilità alla Paris nel punto di 
transizione tra la propagazione sub-critica e quella critica. Si riscontra infine un ottimo accordo tra la 
correlazione proposta e l’evidenza sperimentale relativamente alle leghe di alluminio, titanio ed acciaio.      
 

 
ABSTRACT 

The question about the existence of a correlation between the parameters C and m of the Paris’ law is 
re-examined in this paper. According to dimensional analysis and incomplete self-similarity concepts 
applied to the linear range of fatigue crack growth, a power-law asymptotic representation relating the 
parameter C to m and to the governing variables of the fatigue phenomenon is derived. Then, from the 
observation that the Griffith-Irwin instability must coincide with the Paris’ instability at the onset of rapid 
crack growth, the exponents entering this correlation are determined. A fair good agreement is found 
between the proposed correlation and the experimental data concerning Aluminium, Titanium and steel 
alloys.  
 
 
1. INTRODUCTION 

Fatigue crack growth data for ductile materials are usually presented in terms of the crack growth rate, 

da/dN, and the stress-intensity factor range, ∆K = (Kmax – Kmin). At present, it is a common practice to 

describe the process of fatigue crack growth by a logarithmic da/dN vs. ∆K diagram (see e.g. Fig. 1). 
Three regions are generally recognized on this diagram for a wide collection of experimental results 

[1]. The first region corresponds to stress-intensity factor ranges near a lower threshold value, ∆Kth, 
below which no crack propagation takes place. This region of the diagram is usually referred to as 
Region I, or the near-threshold region [2]. The second linear portion of the diagram defines a power-
law relationship between the crack growth rate and the stress-intensity factor range and is usually 
referred to as Region II [3]. Finally, when Kmax tends to the critical stress-intensity factor, KIC, rapid 
crack propagation takes place and crack growth instability occurs (Region III) [4]. In Region II the Paris’ 
equation [5,6] provides a good approximation to the majority of experimental data: 
 
 d()d ma

C K
N

= ∆ , (1)

 
where C and m are empirical constants usually referred to as Paris’ law parameters. 
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Figure 1. Scheme of the typical fatigue crack propagation curve 
 

From the early 60’s, research studies have been focused on the nature of the Paris’ law 
parameters, demonstrating that C and m cannot be considered as material constants. In fact, they 

depend on the testing conditions, such as the loading ratio R = σmin/σmax = Kmin/Kmax [7], on the 
geometry and size of the specimen [8, 9] and, as pointed out very recently, on the initial crack length 
[10]. However, an important question regarding the Paris’ law parameters still remains to be answered: 
are C and m independent of each other or is it possible to find a correlation between them based on 
theoretical considerations?  Concerning this point, it is important to take note of the controversy in the 
literature about the existence of a correlation between C and m. For instance, Cortie [11] stated that 
the correlation is formal with a little physical relevance, and the high coefficient of correlation between 
C and m is due to the logarithmic data representation. Similar arguments were proposed in [12], where 
a correlation-free representation was presented. On the other hand, a very consistent empirical 
relationship between the Paris’ law parameters was found by several Authors [13, 14] and supported 
by experimental results [3, 13, 15]. 

In this paper, the correlation existing between the Paris’ law parameters is derived on the basis of 
theoretical arguments. To this aim, both self-similarity concepts [9] and the condition that the Paris’ law 
instability corresponds to the Griffith-Irwin instability at the onset of rapid crack growth are profitably 
used. Comparing the functional expressions derived according to these two independent approaches, 
a relation between the Paris’ law parameters C and m is proposed. As a result, it is shown that only 
one macroscopic parameter is needed for the characterization of damage during fatigue crack growth. 
 

2. CORRELATION DERIVED ACCORDING TO SELF-SIMILARITY CONCEPTS 

According to dimensional analysis, the physical phenomenon under observation can be regarded as a 
black box connecting the external variables (called input or governing parameters) with the mechanical 
response (output parameters). In case of fatigue crack growth in Region II, we assume that the 
mechanical response of the system is fully represented by the crack growth rate, q0=da/dN, which is 
the parameter to be determined. This output parameter is a function of a number of variables: 
  

 ( )0121212,,,;,,,;,,,,
n m kq F q q q s s s r r r= … … …  (2)

 
where qi are quantities with independent physical dimensions, i.e. none of these quantities has a 
dimension that can be represented in terms of a product of powers of the dimensions of the remaining 
quantities. Parameters si are such that their dimensions can be expressed as products of powers of 
the dimensions of the parameters qi. Finally, parameters ri are nondimensional quantities.  

As regards the phenomenon of fatigue crack growth, it is possible to consider the following 
functional dependence: 
 

 
( )IC 0

d
, , ; , , , ;1 ,

d
y

a
F K K D h a R

N
σ ϖ= ∆ −  (3)
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where the governing variables are summarized in Tab. 1, along with their physical dimensions 
expressed in the Length-Force-Time class (LFT). From this list it is possible to distinguish between 
three main categories of parameters. The first category regards the material parameters, such as the 

yield stress, σy, and the fracture toughness, KIC. The second category comprises the variables 

governing the testing conditions, such as the stress-intensity factor range, ∆K, the loading ratio, R, and 

the frequency of the loading cycle, ω. Concerning environmental conditions and chemical phenomena, 
they are not considered as primary variables in this formulation and their influence on fatigue crack 
growth can be taken into account as a degradation of the material properties. Finally, the last category 
includes geometric parameters related to the material microstructure, such as the internal 
characteristic length, h, and to the tested geometry, such as the characteristic structural size, D, and 
the initial crack length, a0. 
 
 

Variable Definition Symbol Dimensions 

1q  Tensile yield stress of the material yσ  FL
–2

 

2q  Material fracture toughness ICK  FL
–3/2

 

3q  Frequency of the loading cycle ω  T
–1

 

1s  Stress-intensity range max minK K K∆ = −  FL
–3/2

 

2s  Characteristic structural size D  L 

3s  Characteristic internal length h  L 

4s  Initial crack length 0a  L 

1r  Loading ratio 
max

min

K
R

K
=  – 

 
Table 1 - Governing variables of the fatigue crack growth phenomenon. 

 

Considering a state with no explicit time dependence, it is possible to apply the Buckingham’s Π 
Theorem [16] to reduce by n the number of parameters involved in the problem (see e.g. [8,17-23] for 
some relevant applications of this method in Solid Mechanics). As a result, we have: 
 

 

( )
2 2

2 2 2

IC IC
0 1 2 3 4 52 2 2

y IC IC IC IC y

d
, , , ;1 , , , ,

d

y y ya K K K
D h a R

N K K K K

σ σ σ

σ σ

    ∆
= Φ − = Φ Π Π Π Π Π       

    
. (4)

 

At this point, we want to see if the number of the quantities involved in the relationship (4) can be 

reduced further from five. Considering the nondimensional parameter ∆K/KIC, it has to be noticed that 

this is usually small in the Region II of fatigue crack growth. However, since it is well-known that the 

fatigue crack growth phenomenon is strongly dependent on this variable (see e.g. the Paris’ law in Eq. 

(1)), a complete self-similarity in this parameter cannot be accepted. Hence, assuming an incomplete 

self-similarity in Π1, we have: 
 

 

( )
1

2

IC
1 2 3 4 5

y IC

d
, , ,

d

a K K

N K

β

σ

   ∆
= Φ Π Π Π Π    

  
, (5)

 

where the exponent β1 and, consequently, the nondimensional parameter Φ1, cannot be determined 

from considerations of dimensional analysis alone. Moreover, the exponent β1 may depend on the 

nondimensional parameters Πi. It has to be noticed that Π2 takes into account the effect of the 

specimen size and it corresponds to the square of the nondimensional number Z defined in [8], and to 

the inverse of the square of the brittleness number s introduced in [17, 18, 24]. Moreover, the 

parameter Π4 is responsible for the dependence of the fatigue phenomenon on the initial crack length, 

as recently pointed out in [10]. 
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Repeating this reasoning for the parameter (1–R), which is a small number comprised between 

zero and unity, a complete self-similarity in Π5 would imply that fatigue crack growth is independent of 

the loading ratio. However, this behavior is in contrast with some experimental results indicating an 

increase in the response da/dN when increasing the parameter R [25]. Therefore, assuming again an 

incomplete self-similarity in Π5, we have: 

 

 

( )

( ) ( )

1

2

1 2 1

2

IC
2 2 3 4

y IC

2 2

IC y 2 2 3 4

d
(1 ) , ,

d

(1 ) , , .

a K K
R

N K

K R K

β

β

β β β

σ

σ− −

   ∆
= − Φ Π Π Π =    

  

= − ∆ Φ Π Π Π

 (6)

 

Comparing Eq. (6) with the expression of the Paris’ law, we find that our proposed formulation 

encompasses Eq. (1) as a limit case when: 

 

 

( ) ( )2

1

2 2

IC y 2 2 3 4

,

(1 ) , , .m

m

C K R
β

β

σ− −

=

= − Φ Π Π Π
 (7)

 

As a consequence, from Eq. (7) it is possible to notice that the parameter C is dependent on two 

material parameters, such as the fracture toughness, KIC, and the yield stress, σy, as well as on the 

loading ratio, R, and on the nondimensional parameters Π2, Π3, and Π4. Moreover, Eq. (7) 

demonstrates, from the theoretical standpoint, the existence of a relationship between the parameters 

C and m. 

 

3. CORRELATION DERIVED ACCORDING TO THE CRACK GROWTH 

INSTABILITY CONDITION 
In this Section we derive a correlation between the Paris’ law parameters similar to that in Eq. (7) on 
the basis of the condition of crack growth instability. In fact, as firstly pointed out by Forman et al. [4], 

the crack propagation rate, da/dN, is not only a function of the stress-intensity factor range, ∆K, but 
also on the condition of instability of the crack growth when the maximum stress-intensity factor 
approaches its critical value for the material.  

Focusing our attention on this dependence, Forman et al. [4] observed that the crack propagation 
rate must tend to infinity when Kmax →KIC, i.e. 
 

 

max IC

d
lim

dK K

a

N→

= ∞ . (8)

 

This rapid increase in the crack propagation rate is then responsible for the fast deviation from the 
linear part of the Region II in the fatigue plot (see e.g. Fig. 1). Considering the transition point labeled 
CR in Fig. 1 between Region II and Region III, the following relationship between the crack growth rate 
and the stress-intensity factor range can be derived according to the Paris’ law: 
 

 
( )CR CR

CR

d

d

ma
v C K

N

 
= = ∆ 

 
, (9)

 

where ∆KCR denotes the value of the stress-intensity factor range at the point CR. Due to the fact that a 
rapid variation in the crack propagation rate takes place when the onset of crack instability is reached, 

it is a reasonable assumption to consider Kmax(CR) ≅ KIC. As a consequence, it is possible to correlate 

the value of ∆KCR with the material fracture toughness: 
 
 

CR IC(1 )K R K∆ = − . (10)
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Hence, introducing Eq. (10) into Eq. (9), an approximate relationship between the Paris’ constants is 
derived according to the condition that the onset of the Paris’ instability corresponds to the Griffith-Irwin 
instability: 
 

 

CR

IC

1

(1 )

m

C v
R K

 
≅  

− 
. (11)

 

Moreover, as regards the parameters vCR and KIC entering Eq. (11), it has to be remarked that they are 
almost constant for each class of material. The dependence on the loading ratio is also put into 
evidence in Eq. (11).  

A closer comparison between Eq. (11) and Eq. (7) permits to clarify the role played by vCR. In fact, 
Eq. (11) corresponds to the correlation derived according to self-similarity concepts when: 
 
 

( )

1 2

2

IC
CR 2 2 3 4

y

,

, , ,

m

K
v

β β

σ

= = −

 
= Φ Π Π Π  
 

 (12)

 
confirming the experimental observation reported in [3] that vCR should depend on the material 
properties, on the geometry of the tested specimen, and on the material microstructure. Therefore, 
considering the same testing conditions, this conventional crack growth rate is almost constant for 
each class of material and Eq. (11) establishes a one-to-one correspondence between the C and m 
values. 
 

4. EXPERIMENTAL ASSESSMENT OF THE PROPOSED CORRELATION: 

ALUMINIUM, TITANIUM AND STEEL ALLOYS  
Parameters C and m entering the Paris’ law are usually impossible to estimate according to theoretical 

considerations and fatigue tests have to be performed. However, many Authors [3, 13, 26] 

experimentally observed a very stable relationship between the parameters C and m, which is usually 

represented by the following empirical formula: 

 

 m
C AB= , (13)

 

usually written in a logarithmic form: 
 
 log log logC A m B= + . (14)

 
Taking the logarithm of both sides of the theoretically based relationship between C and m in Eq. (11), 
we obtain 
 

 

CR

IC

1
log log log

(1 )
C v m

R K

 
= +  

− 
, (15)

 

which corresponds to Eq. (14) if 
 

 
CR

IC

,

1
.

(1 )

A v

B
R K

=

=
−

 (16)

 

In order to check the validity of the proposed correlation derived according to the instability condition of 
the crack growth, an experimental assessment is performed by comparing the experimentally 
determined values of B with those theoretically predicted according to Eq. (16).  
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Concerning steels and Aluminium alloys, Radhakrishnan [13] collected a number of data from 

various sources and proposed the following least square fit relationships (∆K being in MPa√m and 
da/dN in m/cycle): 
 

 7 2

6 2

log log(7.6 10 ) log(1.81 10 )

log log(2.5 10 ) log(4.26 10 )

C m

C m

− −

− −

= × + ×

= × + ×

     for steels,

     for Al alloys.
 (17)

 

In order to compare the prediction of our proposed correlation with the experimentally determined 
values of B, parameters m and KIC have to be known in advance. However, only in a few studies both 
the values of the fatigue parameters and of the fracture toughness are experimentally determined and 
reported. Therefore, to avoid experimental tests, the values of the material fracture toughness are 
taken from selected handbooks.  

Concerning steels, we assume A = vCR = 7.6x10
-7 

m/cycle, as experimentally determined by 
Radhakrishnan, R=0, and we try to estimate the parameter B on the basis of the values of the fracture 
toughness proposed in the ASM handbook [27]. This book provides a collection of values in a diagram 
KIC vs. both the prior austenite grain size, and the temperature test. Over a large range of temperatures 

(T from –269°C to 27°C) and grain sizes (d from 1 µm to 16 µm), KIC varies from 20 MPa√m to  100 
MPa√m with an average value of KIC = 60 MPa√m. The comparison can also be extended to 
Aluminium alloys. According to the same procedure discussed above, the estimated average value of 
the critical stress-intensity factor from handbooks [27–30] is equal to KIC = 35 MPa√m with minimum 
and maximum values equal to 15 MPa√m and 49 MPa√m, respectively. Using the average values we 
find: 
 

 7 2

6 2

log log(7.6 10 ) log(1.67 10 )

log log(2.5 10 ) log(2.86 10 )

C m

C m

− −

− −

≅ × + ×

≅ × + ×

     for steels,

     for Al alloys.
 (18)

 

In both cases, a good agreement between the proposed estimation based on an average value of the 
critical stress-intensity factor and the experimental relationships in Eq. (17) is achieved. 

Another source of experimental data is [31], and is based on the NASGRO program [32], which is 
one of the most comprehensive database of fatigue crack growth curves for aerospace alloys. These 
experimental data concern the material fracture toughness, the Paris’ law parameters, as well as the 
crack growth rate corresponding to Kmax~ KIC for fatigue tests characterized by R=0 (see Tab. 2).  

 

Material Experimental data Present correlation 

 

 
KIC       

(MPa m)

 

( )

vCR      

m/cycle

 m  C  C  
Relative 
error (%) 

Alum-2219-T62 (L-T) 28.2 3.5 x 10
–6

 2.87 2.40 x 10
–10

 2.41 x 10
–10

 0 

Alum-2219-T87 (L-T) 27.3 3.5 x 10
–6

 3.30 6.27 x 10
–11

 6.38 x 10
–11

 2 

Alum-6061-T62 (L-T) 25.0 3.5 x 10
–6

 3.20 1.63 x 10
–10

 1.18 x 10
–10

      –28 

Alum-7075-T73, 
Forged (L-T) 

27.3 3.5 x 10
–6

 2.98  1.80 x 10
–10

 1.84 x 10
–10

 2 

Pure titanium  
(Fty = 380 MPa) 

46.0 1.0 x 10
–5

 3.41 1.95 x 10
–11

 2.14 x 10
–11

        10 

Ti–6Al–4V-RT  
(mill annealed) 

15.5 2.0 x 10
–7

 3.11 3.80 x 10
–11

 3.97 x 10
–11

  4 

PH13-8Mo-H1000 
(steel alloy) 

100.0 3.0 x10
–5

 3.40 5.00 x 10
–12

 4.75 x 10
–12

        –5 

 
Table 2 - Experimental assessment of the proposed correlation for aluminium, titanium and steel alloys 

according to the NASGRO database [32]. 
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As previously outlined, the fracture toughness data and the values of vCR are almost constant for 
each class of materials. This property is very well evidenced by the 2219-T62, 2219-T87, 6061-T62 
and 7075-T73 Aluminium alloys. The application of Eq. (9) permits to predict the value of the Paris’ law 
parameter C as a function of m and to compare it with the experimental one reported in the fifth 
column of Tab. 2. The agreement between the experimental data and the predictions made according 
to our correlation is noticeably good, as also evidenced by the relative percentage error reported in the 
last column of Tab. 2. 
 

5. CONCLUSION 
To shed light on the controversy about the existence of a correlation between the Paris’ constants, 

both self-similarity concepts and the condition that the Paris’ law instability corresponds to the Griffith-

Irwin instability at the onset of rapid crack growth have been profitably used. Comparing the functional 

expressions derived from these two independent approaches, an approximate relationship between C 

and m has been proposed. According to this theory, the parameter C is also dependent on the fracture 

toughness of the material, on the crack growth rate at the onset of crack instability, and on the loading 

ratio. The main consequence of this correlation is that only one macroscopic parameter is needed for 

the characterization of damage during fatigue crack growth. A good agreement between the theoretical 

predictions obtained using this correlations and experimental data has been achieved.  

From the engineering standpoint, it has to be emphasized that our proposed correlation constitutes 
a useful tool for design purposes. In fact, in case of a lack of experimental fatigue data for a new 
material to characterize, one could, as a first approximation, determine the parameter C as a function 
of the exponent m according to Eq. (11). Then, a parametric analysis by varying the exponent m in its 
usual range of variation can be performed and numerical simulations of fatigue crack growth can be 
put forward. Parameters vCR and KIC entering the correlation can be either known in advance, or 
estimated from materials with similar composition, thermal treatment and mechanical properties (see 
also [33, 34, 35]). 
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