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SOMMARIO 

In questo lavoro si studia il problema di una frattura semillimitata in condizioni di Modo III in un mezzo 
elastico caratterizzato dalla presenza di microstruttura. Il comportamento del materiale viene 
rappresentato attraverso il modello costitutivo elastico micropolare sviluppato da Koiter. Il modello 
considerato include le lunghezze caratteristiche a flessione e a torsione, proprie della microstruttura 
del materiale, e risulta pertanto in grado di simulare i rilevanti effetti di scala che si riscontrano in 
prossimità dell’apice di una frattura nei materiali con microstruttura, a distanze comparabili alle 
lunghezze caratteristiche. I campi di tensione e spostamento risultano notevolmente influenzati dal 
rapporto tra le lunghezze caratteristiche. In particolare, le tensioni tangenziali davanti all’apice a 
distanza inferiore alla lunghezza caratteristica a torsione, risultano di segno opposto rispetto alla 
soluzione elastica classica, a causa della rotazione relativa tra le particelle materiali situate in 
corrispondenza dell’apice. La soluzione completa mostra che la zona in cui si verifica tale inversione 
ha un’estensione molto ridotta e tende ad annullarsi con la lunghezza caratteristica a torsione del 
materiale. Al di fuori di tale zona, la tensione tangenziale assume un valore massimo, positivo e 
limitato. Tale valore può adottarsi come misura del livello critico di tensione necessario per far 
propagare la frattura. Il manifestarsi di un profilo di frattura a cuspide rivela inoltre che la tenacità a 
frattura dei materiali con microstruttura è in generale più elevata di quella dei materiali elastici classici, 
indicando quindi che la presenza di microstruttura può inibire il processo di frattura. 
 

  
ABSTRACT 

The present work deals with the problem of a stationary semi-infinite crack in an elastic solid with 
microstructures subject to remote classical KIII field. The material behaviour is described by the 
indeterminate theory of couple stress elasticity. By incorporating the characteristic lengths in bending 
and torsion of the material, the adopted constitutive model is able to account for the underlying micro-
structure as well as for the strong size effects arising at small scales. The stress and displacement 
fields turn out to be strongly influenced by the ratio between the characteristic lengths. In particular, 
due to the relative rotation of the microstructural particles currently at the crack tip the total shear 
stress and reduced tractions ahead of the crack tip display the opposite sign with respect to the 
classical LEFM solution within a zone smaller than the characteristic length in torsion. However, this 
zone has limited physical relevance and becomes vanishing small for a characteristic length in torsion 
of zero. Outside this zone, the full field solution exhibits a bounded maximum for the shear stress 
ahead of the crack tip, whose magnitude can be adopted as a measure of the critical stress level for 
crack advancing. The corresponding fracture criterion defines a critical stress intensity factor which 
increases with the characteristic length in torsion. Moreover, the occurrence of a sharp crack profile 
indicates that the crack becomes stiffer with respect to the classical elastic response, thus revealing 
that the presence of microstructures may shield the crack tip from fracture. 
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1. INTRODUCTION  

The main reason motivating the extension of the classical theory of elasticity to couple stress (CS) and 
strain gradient (SG) constitutive models is that the former is not able to characterize the constitutive 
behavior of brittle materials at the micron scale, due to the lack of a length scale. In particular, it can 
not predict the size effect experimentally observed when the representative scale of the deformation 
field becomes comparable to the length scale of the microstructure, such as the grain size in a 
polycrystalline or granular aggregate. It is well known indeed that in presence of stress concentration, 
such as near holes and notches, the macroscopic strength of these materials is higher if the grain size 
is smaller and that the bending and torsional strengths of beams and wires are greater if their cross 
section is thinner [1, 2]. In general, the size and shape of the microstructures have a strong influence 
on the mechanical properties of materials. The indeterminate theory of CS elasticity developed by 
Koiter [3] may be considered as an effort to include material characteristic lengths into the continuum 
theory. It allows accounting for the size and kind of microstructures since it involves two material 

parameters, namely the length ℓ and ratio η, which are related to the characteristic lengths in bending 

and torsion. As a consequence, CS elasticity can describe the mechanical behaviour of many materials 
with microstructures, like fibrous composites [4], cellular materials [5] and laminates, where moments 
may be transmitted through fibers, or in the cell ribs or walls. Also masonry, bone, foam and granular 
materials can be modelled within the framework of CS elasticity [6-8].  
If the classical theory of elasticity is adopted for the analysis of the stress and deformation fields near 
the tip of a crack in a material with microstructures, then the results are expected to be rather 
inaccurate at distance to the crack tip comparable with the material characteristic lengths. Therefore, 
for the investigations of the crack tip fields at the micron scale it becomes necessary to make use of 
enhanced constitutive models, which may account for the presence of microstructure. The theory of 
CS elasticity may be considered as sufficiently accurate for the investigation of the crack tip zone and 
still enough simple to allow obtaining closed form analytical solutions.  
The effects of elastic strain gradients on the stress and displacement fields for a stationary Mode III 
crack were investigated in [9-11]. In particular, the specialization of the constitutive model here adopted 
with η = 0 is considered in [9]. The results therein provided predict a substantial increase in the 
singularities of the skew-symmetric stress and couple stress fields, whereas the symmetric stress field 
turns out to be non-singular. Moreover, the shear stress and the reduced tractions ahead of the crack 
tip, within a zone smaller than the characteristic lengths, switch their sign with respect to the classical 
LEFM solution. This circumstance is due to the relative rotation of the particles currently at the crack 
tip, which yields opposite displacements ahead and behind the crack tip. The asymptotic analysis 
previously performed [12] for CS elastic material with two characteristic lengths confirmed this trend 
and showed that the angular distribution of the crack tip fields are strongly influenced by the 
characteristic lengths ratio η. A similar trend but with a reduced value of the singularity is also observed 
for Mode III crack propagation in elastic-plastic CS materials with linear strain hardening [13-14].  
While the effects of the characteristic length in bending on Mode III crack fields have been investigated 
in [9], the role played by the characteristic length in torsion, which affects the ratio η but has no 

influence on ℓ, is almost unexplored. However, it is expected to have a strong influence on antiplane 

problems. Therefore, the problem of a stationary Mode III crack in a CS elastic solid with two 
characteristic lengths has been investigated in the present work. The full-field solution for a semi 
infinite crack subject to remote classical KIII field has been analytically obtained by following the 
approach introduced in [15] and later adopted in [9], which makes use of Fourier transform and 
Wiener-Hopf technique [16]. The knowledge of the full-field solution allows evaluating the size of the 
zone ahead of the crack tip where the shear stress has the negative sign, which is expected to strongly 
depend on the characteristic length in torsion and thus on the ratio η. Outside this zone, which has 
limited physical relevance, the shear stress is found to exhibit a bounded positive maximum. This 
occurrence allows formulating a fracture criterion for crack advancing which assumes a critical value 
for the maximum positive shear stress ahead of the crack tip. Correspondingly, the proposed criterion 
defines a critical value of the stress intensity factor required for crack propagation, which explicitly 
depends on the microstructure through the material characteristic lengths.  
 

 
2. GOVERNING EQUATIONS  

Reference is made to a Cartesian coordinate system (0, x1, x2, x3) centred at the crack-tip. Under anti-
plane shear deformation, the indeterminate theory of CS elasticity [3] adopted in the present study 
provides the following kinematical compatibility conditions between the out-of-plane displacement w, 

rotation vector φ, strain tensor ε and deformation curvature tensor χ  
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 ε13 = w,1/2, ε23 = w,2 /2, φ1 = w,2/2,    φ2 = – w,1/2,   (1) 

 χ11 = – χ22 = w,12 /2, χ21 = – w,11/2 , χ12 = w,22/2.  (2) 

Therefore, rotations are derived from displacements and the tensor field χ turns out to be irrotational. 
According to the CS theory [3] the non-symmetric Cauchy stress tensor t can be decomposed into a 

symmetric part σ and a skew-symmetric part τ, namely t = σ + τ. In addition, the couple stress tensor µ 

is introduced as the work-conjugated quantity of χ
T
. For the antiplane problem within the CS theory     ε, 

σ, τ, χ and µ are purely deviatoric tensors. The conditions of quasistatic equilibrium of forces and 
moments write 

 σ13,1 + σ23,2 + τ13,1 + τ23,2 = 0, µ11,1 + µ21,2 + 2 τ23 = 0, µ12,1 + µ22,2 – 2 τ13 = 0.  (3)  

Within the context of small deformations theory, the total strain ε and the deformation curvature χ are 
related to stress and couple stress through the following constitutive relations  

 σ = 2G ε, µ = 2G ℓ
2 
(χ

T 
+ η χ), (4) 

where G is the elastic shear modulus, ν the Poisson ratio, ℓ and η the CS parameters introduced in [3], 

with −1 <  η <  1. The material parameters ℓ and η depend on the material characteristic lengths in 

bending and in torsion, namely ℓb = ℓ /√2 and ℓt = ℓ (1 + η)
1/2

. Typical values of ℓb and ℓt for some 

classes of materials with microstructure can be found in [6-7]. In particular, the limit value of η = −1 
corresponds to a vanishing small characteristic length in torsion, typical of polycrystalline metals, and 

the case η  = 0 studied in [9], corresponds to ℓt = ℓ = √2 ℓb. Constitutive equations (4) and compatibility 

relations (1) and (2) give stresses and couple stresses as functions of the displacement w: 

 σ13 = G w,1, σ23 = G w,2,  (5) 

 µ11 = µ22 = G ℓ
2 
(1 + η) w,12, µ21 = G ℓ

2 
(w,22 – η w,11), µ12 = – G ℓ

2 
(w,11 – η w,22).  (6)  

 
The introduction of (6) into (3)2,3 yields 

 τ13 = – G ℓ
2  
∆w,1/2,  τ23 = – G ℓ

2 
∆w,2/2,  (7) 

where ∆ denotes the Laplace operator. A substitution of (7) and (5) into (3)1 gives the following PDE for 
the function w: 

 2 ∆w – ℓ
2  
∆∆w = 0.  (8) 

The reduced tractions p3 and couple stress tractions q1 on the crack surfaces are 

 p3 = σ23 + τ23 + µ22,1/2 = 0, q1 = µ21 = 0,   (9) 

respectively. According to (5)2, (6)1,2 and (7)2, vanishing of generalized tractions (9) on the crack 
surface implies the following boundary conditions for the function w: 
 

 2 w,2 – ℓ
2 [(2 + η) w,11  + w,22],2 = 0, w,22 – η w,11 = 0,  for x1 <  0,  x2 = 0.  (10) 

 
Moreover, ahead of the crack tip the skew-symmetry of the Mode III crack problem requires  
 
 w  = 0, w,22 – η w,11 = 0, for x1 >  0,  x2 = 0.  (11) 
 
 
3. FULL FIELD SOLUTION 

In the present section the Wiener-Hopf analytic continuation technique [16] is used to obtain the full 
field solution for a semi infinite crack in an infinite medium subject to remote classical KIII field. Only the 
upper half-plane (x2 ≥ 0) is considered due to the skew-symmetry of the problem. Use of the Fourier 
transform and inverse transform is made. For the function w(x1, x2) they are 

 1),(),( 212
xsiexxwxsw ∫

∞

∞−
= dx1, 

1),(
2

1
),( 221

xsiexswxxw −
∞

∞−∫π
= ds, (12) 

respectively, where s is a real variable. Introduction of (12)2 into the governing equation (8), yields the 
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following ODE for ),( 2xsw  

  2222,w − 2 (s
2
 + 1/ℓ

2
) 22,w + s

2
 (s

2
 + 2/ℓ

2
) w = 0, (13) 

which admits as bounded solution in the upper half-plane 

  w (s, x2) = C(s) 2
22 /2 xse ℓ+−

+ D(s) 2|| xse−
,  for x2 ≥ 0, (14) 

where the functions C(s) and D(s) can be determined by the boundary conditions (10) and (11). 
Introduction of (12)2 and (14) into the boundary conditions (10)2 and (11)2, which hold on the entire line 
x2 = 0, yields the following relation between C(s) and D(s)  

 C(s) = − 
2

2

1 s

s

α+

α
 D(s),       where α = (1+ η) ℓ

2
/2, (15) 

and thus the function w in (14) can be written as:   

w (s, x2) = [ 2|| xse− − 
2

2

1 s

s

α+

α
 2

22 /2 xse ℓ+−
] D(s), for x2 ≥ 0. (16) 

The Fourier transform of the boundary condition (10)1, yields  

 2,w (s, 0) + [(2 + η) s2
 2,w (s, 0) − 222,w  (s, 0)] ℓ2/2  = )(3 sp + /G,  (17) 

where +3p is the transform of the reduced traction p3 ahead of the crack tip, at x1 >  0 and x2 = 0: 

 )(3 sp + = G ∫
∞

0
,{w 2(x1, 0) – 

2

2
ℓ

[(2 + η) w,112(x1, 0) + w,222(x1, 0) ]} 1xsie dx1,   (18) 

which is analytic in the upper half complex s plane, Im(s) >  0. Similarly, the Fourier transform of the 
boundary condition (11)1 which applies to x1 >  0 only, gives  

 w (s, 0)  = −w (s),  where −w (s) = ∫ ∞−

0

1
1)0,( xsiexw dx1,  (19) 

is analytic in the lower half complex s plane, Im(s) <  0. Introduction of (14) and (15) in (17) and (1 9) 
gives 

)(3 sp + = G [
2

22

1

)(

s

s

α+

α
(s

2
 + 2/ℓ

2
)
1/2 − (1 + α s

2
) | s |]  D(s), −w (s) = D(s) /(1 + α s

2
),  (20) 

respectively. Elimination of D(s) from (20) yields 

)(3 sp + = − G | s | f (s) −w (s),  where f (s) = (1+ α s
2
)
2 − α s

2
 (α s

2
)
1/2

 (1+ η + α s
2
)
1/2

.  (21) 

In order to apply to the Wiener–Hopf technique of analytic continuation, equation (21)1 needs to be 
factorized into the product of two functions analytic in the upper and lower half s planes, respectively. 

Note that the function | s | can be factorized as | s | = s+
1/2 

s−
1/2

, where s+
1/2 

 and s−
1/2

 have branch cuts 

from 0 to −i ∞ and from 0 to i ∞, and are therefore analytic in the upper and lower half s planes, 
respectively. The branch cuts are chosen such that the square root functions are positive when s is 
real and positive. By using the argument principle [15] it can be shown that the function f (s) has only 

two roots in the complex s plane, namely s = ±  i a α−1/2
, where a is the unique real and positive, non-

dimensional root of the equation 

 (3 − η) a
6 − 6 a

4 
+ 4 a

2 − 1 = 0,   (22) 

Note that a
 
 = 1 for η = 0. The function f (s) can thus be factorized by following the approach proposed 

in [14] and [9] as 

 f (s) = 
2

3 η−
 (α s

2
  + a

2
)
 
 k−(s) k+(s),   (23) 

where the functions 

 k+(s) = )2/( ℓsiRe −− ,  k−(s) = )2/( ℓsiRe− ,  (24) 

are analytic in the upper and lower half complex s planes, respectively, and the function R is 
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 R(x) = 
π

1
 

xt

dt

t

tt
arctg

+−
η+

−
∫
1

0

]
)

1
1(

1
[

22

23

.  (25) 

By multiplying both sides of equation (21)1 by s and using (23), it can be factorized as 

 
2)1()3(

4

ℓGη+η− )()/(

)( 2/1
3

skais

ssp

+

++

α+
 = − 2/3

−s  (s − i a / α ) k−(s) −w (s).  (26) 

The left and right sides of (26) are analytic functions in the upper and lower half s plane, respectively, 
and thus define an entire function on the s plane. The Fourier transform of the asymptotic fields 

obtained in Section 3 gives +2p  ∼ s
1/2

 and −w ∼ s−5/2
 as s → ∞, and thus both sides of (26) are bounded 

as s → ∞ and must equal a constant F in the entire s plane according to Louville’s theorem, so that  

 )(3 sp + = (1 + η)(3 − η)
4

2
ℓGF

2/1

)()/(

+

+α+

s

skais
, −w (s) = −

)()/(2/3 skaiss

F

−− α−
.    (27) 

The constant F can be determined from the Fourier transform of the remotely applied classical KIII field, 

namely for r → ∞, which corresponds to s → 0. The Fourier transform of sliding displacement and 
shear stress in classical KIII field are 

 )(3 sp + = III2/12

1
K

s

i

+

+
, −w (s) = − III2/32

1
K

sG

i

−

+
, as s → 0.  (28) 

A comparison of (28) with the limit of (27) as s → 0, by using (21)2, (23) and (24), implies that  

 F  = 
)3)(1(

1III

η−η+

− i

G

K

ℓ
.  (29) 

Finally, the introduction of (29) and (24) in (27) yields 

 −w (s) = −
)3)(1(

1III

η−η+

− i

G

K

ℓ )/(2/3

)2/(

α− aiss

e siR ℓ

,  (30) 

 )(3 sp + = 41
III

i
K

−
ℓ )3)(1( η−η+ )2/(2/12/1 ])()[( ℓsiResais −−−α+ .   (31) 

 

 

4. RESULTS 
Stress, couple stress and displacement fields can be obtained from (30) and (31) by inverse Fourier 

transform. In particular, the Fourier transform of the total shear stress t23 = σ23 + τ23 at x2 = 0 follows 
from (5)2, (7)2, (17), (21)2 and (31) as: 

 23t (s, 0) = 
2

1
III

i
K

−
ℓ

η−

η+

3

1
2/1

)2/(2

)()(

)1(

sais

es siR

α−α

α+ ℓ

.   (32) 

The integration path in the inverse Fourier transform may be transformed in the lower half s plane to 
two straight lines on the two sides of the negative imaginary axis plus a half circle centered at the origin 
with radius approaching infinity. The integration on the large circle then gives a vanishing small 
contribution, whereas the integration over the two straight lines yields 

 t23 (x1, 0) = 
ℓ)3(

24III

η−π

K
dte

tta

t
e tRxt )(

0

2
/2

]1[

)1(1
1∫

∞ −

η++

η+−ℓ
,  for x1 >  0.  (33) 

The normalized shear stress ahead of the crack tip, t23 (2πℓ)1/2
/KIII at x2 = 0, versus normalized distance 

x1/ℓ is shown in Fig. 1a, together with the near-tip asymptotic field for CS elasticity obtained in [12] and 

the shear stress traction in the classical KIII field. The full-field solution displays a smooth transition 
from the positive remote classical KIII field to the negative near-tip field, as x1 decreases and becomes 

smaller than ℓ. As the ratio η decreases from 1 to −1 and thus ℓt tends to zero, then the total shear 
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stress t23 approaches the classical KIII field from below. However, it switches to negative values at very 

small distance to the crack tip, denoted by x1
0
. The variation of the ratio x1

0
/ℓ with η is plotted in Fig. 1b 

(dash-dotted line). It can be observed that the zone ahead of the crack tip with negative shear stress 

significantly reduces in size and tends to vanish as η comes close to −1, as a consequence of the 

corresponding reduction in the characteristic length in torsion ℓt. Strain gradient effects are observed 

up to a distance of 5ℓ to the crack tip. For larger distance the full-field solution coincides with the 

classical KIII field. 
Since the size of the zone where the shear stress has the negative sign is very small, it can be 
considered of no physical importance. Outside of this zone the shear stress exhibits a maximum that is 

bounded and positive for −1<  η < 1. The maximum is attained at a distance x1
max

 to the crack tip, which 
satisfy the condition t23, 1 (x1

max
, 0) = 0, namely from (33): 

 dtet
ta

t
e tRxt )(

0

2
/2

]1[

)1(1max
1∫

∞ −

η++

η+−ℓ

 = 0. (34) 

The variation of the non dimensional ratio x1
max

/ℓ is plotted in Fig. 1b as function of η (dashed line). 

Classical LEFM does not provide this feature since the classical KIII shear stress field monotonically 
increases and is unbounded without any local maximum (Fig. 1a). The occurrence of a maximum 
positive value of the shear stress ahead of the crack tip, t23

max
 = t23(x1

max
, 0), allows formulating a 

simple fracture criterion by assuming a critical shear stress level τC at which the crack may start 

propagating. The corresponding fracture criterion may thus be written as t23
max

 = τC. The normalized 

value of t23
max

 is plotted in Fig. 1b as a function of η (dotted line). It is unbounded as η approaches −1, 
since in this limit the full field solution for the total shear stress approaches the classical KIII field, and it 

decreases as η increases from −1 to 1, in agreement with the results plotted in Fig. 1a. According to 
the proposed fracture criterion, a critical stress intensity factor KIIIC can be defined by using (33) as 

 KIIIC = τC 
42

)3( ℓη−π
dte

tta

t
e tRxt )(

0

2
/2

]1[

)1(1max
1∫

∞ −

η++

η+−ℓ

. (35) 

The normalized value of KIIIC is plotted in Fig. 1b as a function of η (solid line). It explicitly depends on 

the microstructure through the parameters ℓ and η and, in particular, it is found to increase with η. It 

follows that materials with larger characteristic length in torsion are expected to exhibit higher fracture 
toughness under Mode III loading conditions, in agreement with previous investigations [5, 11], which 
also found that the presence of microstructure yields an increase of fracture toughness. 
The sliding displacement w on the crack face can be obtained from the inverse Fourier transform of 
equation (30). However, in order to ensure the inverse Fourier transform converges the function w,1 is 

first obtained from the inverse Fourier transform of –i s −w , Then, a conversion of the integration path 

to the positive imaginary s axis, where s = iy and y ≥ 0, yields: 
 
 

     
Fig. 1 – a) variation of shear stress t23  along the x1 axis, ahead of the crack tip. b) variations of the 
critical stress intensity factor KIIIC, maximum shear stress t23

max
 and its location x1

max
 and size x1

0 
of the 

−1.
η 

0 

1 

2 

3 

−0. 0.0 0.5 1.0 

KIIIC (2πℓ)−1/2
/τC  

t23
max 

(2πℓ)1/2
/KIII 

x1
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/ℓ 

x
0
/ℓ 

b) 
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)1
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zone with negative shear stress with the ratio η   

 w,1(x1, 0) = 
)3)(1(

2III

η−η+πℓG

K
∫

∞ +−

α−0

)2/(

)/(

1

ayy

e xyyR ℓ

dy,  for x1 <  0.  (36) 

By integrating w,1 with respect to x1, imposing the condition w = 0 at the crack tip, namely at x1 = 0 and 

substituting for t = yℓ/√2, the displacement on the crack surface can be obtained as 

 w (x1, 0) = 
)3)(1(24

III

η−η+π

ℓ

G

K
 ∫

∞

η+

−

−

−
0

1

)(/2

)(

)1(
a

tRxt

ttt

ee ℓ

dt,  for x1 <  0.  (37) 

By using (21)2, (22), (23) and (24), it can be shown that  

  e
R(−t)

 = 
2

3 η− )(

)1(

12

)1(

144

22222

1
1

224

2
)3(

1)(
tR

aa

a
e

tt

tttt
−

η+η+

−

η+

+−η−

−+−
. (38) 

Finally, the introduction of equation (38) in the expression (37) of the sliding displacement yields  

w (x1, 0) = 
η+

η−

π 1

3

2 4/5
III

G

K ℓ

∫
∞

η+η+

−
η+

η+

+−η−−

−−+−−

0 )(

)1(

12

)1(

144

1

2322

1
1/2

])3[()(

)]1(1)[()1(

224

2

1

tR

aa

aa

xt

ettttt

dttHttte ℓ

,   (39) 

for x1 <  0, where the Cauchy principal value of the integr al must be considered, since the integrand 

function is singular at t = a (1+ η)−1/2
.  

The normalized sliding displacement on the crack face, w G (π/2ℓ)1/2
/KIII at x2 = 0, versus normalized 

distance r/ℓ to the crack tip is shown in Fig. 2a and plotted in logarithmic scales in Fig. 2b. As well 

known, the crack tip profile is blunted for the classical KIII displacement field whereas it turns out to be 
sharp in CS elastic materials, in agreement with the atomistically sharp crack tip experimentally 
observed for cleavage fracture [17]. The magnitude of the sliding displacement between the crack 

faces remarkably decreases as η increases from −1 to 1, indicating that the crack becomes stiffer in 
comparison with the classical elastic response. In fact, the strain energy density for CS materials 
increases with respect to classical elasticity due to the contribution of the strain rotational gradients, 
thus resulting in a stiffer material. This occurrence confirms that the microstructure may shield the 
crack tip from fracture, as already observed in [11] for SG elastic behavior and in [13, 14] for Mode III 
ductile crack propagation in materials with microstructures. 
The dotted straight lines with slopes 3/2 in Fig. 2b correspond to the near-tip asymptotic field for CS 
elasticity obtained in [12] for the three considered values of η, whereas the dotted line with slope 1/2 
corresponds to the classical solution of LEFM under KIII remote field. From Fig. 2b it can be observed 
that the full-field solution displays a smooth transition between these two fields. 
 

  
Fig. 2. Variation of crack face sliding displacement w along the crack face. 
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5. CONCLUSIONS 

The full-field solution here provided for a semi-infinite mode III crack in CS elastic materials with 
characteristic lengths in bending and torsion subje ct to remote classical KIII field displays a continuous 

transition from the classical KIII fields, which hold at a distance to the crack tip larger than 5ℓ, to the 

asymptotic fields which display negative shear stress ahead of the crack tip. The size of the zone with 

negative shear stress tends to vanish as η approaches the limit value −1, which corresponds to a 
vanishing small characteristic length in torsion. Outside this extremely small zone, which actually has 
no physical relevance, the total shear stress distribution exhibits a local bounded maximum, whose 
magnitude can be adopted as a measure of the critical stress level for further crack advancing. 
According to this fracture criterion the fracture toughness of the material is shown to increases with the 
characteristic length in torsion. The occurrence of a sharp crack profile also indicates that the crack 
becomes stiffer with respect to the classical elastic response, thus revealing that the presence of 
microstructures may shield the crack tip from fracture. Shielding can reasonably be expected since the 
contribution of strain gradients to the strain energy density increases the stiffness of the material.  
As a conclusion, the present approach provides a means to link scales in fracture mechanics, namely 
from atomistic through microscale to macroscopic fracture, which allows understanding the detailed 
mechanisms by which fracture may occur in brittle materials with complex microstructure, up to the 
micron scale. Moreover, the inclusion of two material characteristic lengths provides more realistic 
predictions on the tractions level ahead of the crack-tip then the classical LEFM solution, as well as 
more accurate results then the simple CS theory of elasticity with η = 0 adopted in [9]. It also sheds 
some light on the shielding mechanisms against fracture originating from the presence of 
microstructures and allows evaluating the corresponding increase in Mode III fracture toughness. 
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