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SOMMARIO 
In questo lavoro viene effettuata un’analisi asintotica dei campi di tensione e deformazione in 
prossimità dell’apice di una frattura in un materiale con microstruttura, in condizioni di modo III. Per 
rappresentare il comportamento del materiale è stato utilizzato il modello costitutivo elastico polare 
sviluppato da Koiter, che include due distinte lunghezze caratteristiche proprie della microstruttura del 
materiale. Pertanto, il modello considerato risulta in grado di simulare i rilevanti effetti di scala che si 
riscontrano in prossimità dell’apice di una frattura nei materiali con microstruttura, a distanze 
comparabili a quelle delle lunghezze caratteristiche. In particolare si osserva che la presenza di 
microstruttura comporta un notevole incremento della singolarità delle componenti antisimmetriche di 
tensione e, quindi, delle trazioni davanti all’apice, mentre le componenti simmetriche di tensione 
risultano limitate. Tali osservazioni si presentano in accordo con i risultati ottenuti considerando una 
sola lunghezza caratteristica del materiale. Nel presente lavoro viene inoltre evidenziata l’influenza 
esercitata dal rapporto tra le due lunghezze caratteristiche sugli andamenti dei campi asintotici in 
funzione della coordinata angolare e sul rilascio di energia in prossimità dell’apice. 

 
  

ABSTRACT 
The asymptotic fields near the tip of a stationary crack in a strain gradient elastic material under Mode 
III loading conditions are investigated by adopting the indeterminate theory of couple stress elasticity 
with two characteristic lengths. The adopted constitutive model is able to account for the underlying 
microstructure of the material as well as for the strong size effects arising at small scales. The effects 
of microstructure on Mode III crack tip fields mainly consist in a substantial increase in the singularities 
of the skew-symmetric stress and couple stress fields thus resulting in a significant increase of the 
tractions level ahead of the crack-tip. Correspondingly, the symmetric stress field turns out to be non-
singular. These results agree with the findings of the asymptotic analysis performed for a single 
material characteristic length. However, the angular variations of the crack tip fields and the energy 
release rate turn out to be strongly influenced by the ratio between the two characteristic lengths. 

 
  

1. INTRODUCTION 
Due to the lack of a length scale, the classical theory of elasticity is not able to characterize the 
constitutive behavior of brittle materials at the micron scale. This lack is expected to be particularly 
significant for the analysis of the stress and deformation fields very near the tip of a crack, which are 
altered by the presence of the microstructure. Therefore, for the investigations of the crack tip fields at 
the micron scale it becomes necessary to adopt enhanced constitutive models, which account for the 
presence of microstructure. A way of doing that consists in the inclusion of one or more characteristic 
lengths, typically of the same order of the compositional grain size, generally few microns, for many 
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advanced materials like silicon nitride ceramics, which can be regarded as a class of material 
comparable to steel. The size and shape of the grains have a strong influence on their different 
mechanical properties. In particular, high strength materials exhibit a fine-grained, elongated 
microstructure, while materials with a high fracture toughness are more coarse grained [1]. The 
indeterminate theory of CS elasticity developed by Koiter [2] allows to account for the size and shape 
of the grains since it involves two material characteristic lengths and it can describe the mechanical 
behaviour of many elastic materials with microstructures, like cellular materials, fibrous composites 
and laminates, where moments may be transmitted through fibers, or in the cell ribs or walls. In fibrous 
composites, the characteristic lengths may be the on the order of the spacing between fibers [3]; in 
cellular solids they may be comparable to the average cell size [4,5]; in laminates they may be on the 
order of the lamination thickness [6].  
The problem of Mode III crack propagation in couple stress elastic materials was first analyzed in [7] 
by considering a single characteristic length. The results obtained therein [7] indicate that the skew-
symmetric stress components have r3/2 singularity near the crack-tip, where r is the distance to the 
crack tip. Although this singularity is much stronger than the conventional square-root singularity, it 
does not violate the boundness of strain energy surrounding the crack tip and leads to a finite energy 
release rate. However, up to now, the effects of both characteristic lengths on the crack tip fields are 
almost unexplored. 
In the present work, the effects of strain rotation gradients on a stationary Mode III crack are 
investigated by performing an asymptotic analysis of the crack-tip fields. Two characteristic material 
lengths of the same order, denoted by L and L′, are taken into account. According to the results 
obtained in [7] for a single characteristic material length L, the skew-symmetric stress field dominates 
the asymptotic field, producing thus a remarkable increase of tractions level at the crack tip. The roles 
of both characteristic lengths are examined in detail and the influence of their ratio on the crack tip 
fields and energy release rate is analytically explored. The inclusion of two distinct characteristic 
lengths provides more realistic predictions on the tractions level ahead of the crack-tip then the 
classical linear elastic solution and gives more accurate results then the CS theory of elasticity with a 
single characteristic length, allowing the detailed mechanisms by which fracture may grow and 
propagate in brittle materials to be understood in more depth, up to the micron scale. 

 
  

2. GOVERNING EQUATIONS 
Reference is made to a Cartesian coordinate system (0, x1, x2) centred at the crack-tip. Under anti-
plane shear deformation, the indeterminate theory of CS elasticity [2] adopted in the present study 
provides the following kinematical compatibility conditions between the out-of-plane displacement w, 
rotation vector ϕ, strain tensor ε and deformation curvature tensor χ  
 
 ε13 = w,1 /2  ε23 = w,2 /2 ϕ1 = w,2 /2,    ϕ2 = – w,1 /2,   (1) 
 
 χ11 = – χ22 = w,12 /2 χ21 = – w,11 /2 χ12 = w,22 /2.  (2) 
 
Therefore, rotations are derived from displacements and the tensor field χ turns out to be irrotational. 
According to the CS theory [2] the non-symmetrical Cauchy stress tensor t can be decomposed into a 
symmetric part σ and a skew-symmetric part τ, namely t = σ + τ. In addition, the couple stress tensor 
μ is introduced as the work-conjugated quantity of χ T. For the antiplane problem within the couple 
stress theory  ε, σ, χ and μ are purely deviatoric tensors. The reduced surface tractions vector p and 
couple stress tractions vector q are defined respectively as 

 p = tT n + 
2
1 ∇μnn × n, q = μT n – μnn n, (3) 

where n denotes the outward unit normal. The conditions of quasistatic equilibrium of forces and 
moments write 
 
 σ13,1 + σ23,2 + τ13,1 + τ23,2 = 0,  μ11,1 + μ21,2 + 2 τ23 = 0,  μ12,1 + μ22,2 – 2 τ13 = 0  (4)  
  
Within the context of small deformations theory, the total strain ε and the deformation curvature χ are 
related to stress and couple stress through the following isotropic constitutive relations  
 
 σ = 2G ε, μ = 2G L2 (χT + η χ), (5) 



 
where G is the elastic shear modulus and η = L′/L the dimensionless ratio between characteristic 
lengths introduced by Koiter [2], with −1 < η < 1. The magnitude of the material characteristic lengths 
depends on the microstructure and it generally is of the order of few microns for brittle ceramics. In 
particular, they can be related to the characteristic lengths for torsion and for bending [8]. 
The constitutive equations of the indeterminate CS theory do not define the skew-symmetric part τ of 
the total stress tensor t. However, τ can be obtained from the equilibrium equation (4)2. Constitutive 
equations (5) together with compatibility relations (1) and (2) give 
 
 σ13 = G w,1,  σ23 = G w,2,  (6) 
 
 μ11 = G L2 (1 +  η) w,12, μ21 = G L2 (w,22 –  η w,11), μ12 = – G L2 (w,11 –  η w,22).  (7)  
 
The introduction of (6) into (3)2,3 yields 
 
 2 τ13 = – G L2 Δw,1,  2 τ23 = – G L2 Δw,2,   (8) 
 
where Δ denotes the Laplacian operator. Finally, The introduction of (8) and (6) into (4)1 yields the 
following PDE for the unknown displacement function w: 
 
 2 Δw – L2 ΔΔw = 0,  (9) 
 
By using (3), the conditions of traction free on the crack surfaces where n = (0, –1) can be written as 
 
 2 (σ23 + τ23) + μ22,1 = 0, μ21 = 0,  for x1 < 0,  x2 = 0,  (10) 
 
which yield the following conditions for the function w: 
 
 2 w,2 – L2 [(2 + η) w,11  + w,22],2 = 0, w,22 –  η w,11 = 0,  for x1 < 0,  x2 = 0.  (11) 
 
Ahead of the crack tip the skew-symmetry of the Mode III crack problem requires  
 
 w  = 0, w,22 –   η w,11 = 0,  for x1 > 0,  x2 = 0.  (12) 
 
Note that the ratio η enters the boundary conditions (11)-(12), but it does not appear into the 
governing equation (9). Moreover, by using (1) and (2) the strain energy density in antiplane shear 
deformation becomes 

     Φ = G ε • ε + G L2 (χ • χ + η χ • χT) = 
4

2LG [(w,11 + w,22)2 + 2 (1 + η) (w,12
2 – w,11 w,22)].    (13) 

 
For a mode III crack in couple stress elastic materials the path-independent J-integral generalizes to 
 

 J = ∫Γ
(Φ n – p • e3 ∇w – ∇ϕT q) • e1 ds,   (14) 

where Γ is an arbitrary contour surrounding the crack tip. Note that J can be proved to coincide with 
the energy release rate [7]. 
 

  
3. MODE III ASYMPTOTIC CRACK-TIP FIELDS 
An asymptotic analysis of the crack tip fields is performed in the present section by assuming the 
displacement w in separate variable form, namely w(r, θ) = r p W(θ), where r and θ are polar 
coordinates centered at the crack tip and the exponent p defines the radial dependence of the 
displacement w as r → 0. By using the derivative rules for an arbitrary function f = f (x1, x2) = f (r, θ): 
 
 f,1 = f,r cosθ – f,θ sinθ /r,  f,1 = f,r sinθ + f,θ cosθ /r,  (15) 
 



and keeping the most singular terms only, the governing equation (9) and boundary conditions (11) 
and (12) write: 
 
 W IV(θ) + 2 (p2 – 2 p + 2) W II(θ) + p2 (p – 2)2 W (θ) = 0,   (16) 
 
 W (0)  = 0, W II(π) + p (1 + η – η p) W (π)  = 0,    (17) 
 
 W II(0) = 0, W III(π) + [p2 +(1 +  η) (p2 – 3 p + 2)] W I(π) = 0. (18) 
 
In order to obtain a nontrivial solution, the homogeneous boundary value problem (16)-(18) admits the 
following values of the exponent: p = 1/2, 3/2, 5/2 …. The boundness of the flux of energy toward the 
crack tip (14) require that 2(p – 2) + 1 ≥ 0 and thus the first admissible value for the exponent p is 3/2, 
leading to the following expression for the out-of-plane displacement  
 
 w(r, θ) = B r3/2 [(5/3 – η) sin(3θ/2) – (1 + η) sin(θ/2)],   (19) 
 
where B is an amplitude factor for the lowest order asymptotic crack-tip fields. Therefore the slope of 
the sliding displacement behind the crack tip vanishes at r = 0, so that the crack tip is sharp and not 
blunted. According to (1), (6)-(8), the corresponding rotation, stress and couple stress fields become 
 

 ϕ1 = rB
2

[1 – 3η + (1+η) cosθ] cos(θ/2), ϕ2 = rB
2

[– 3 + η + (1+η) cosθ] sin(θ/2),     (20) 

 σ13 = B G r [3 – η – (1+η) cosθ] sin(θ/2),   σ23 = B G r [1 – 3η + (1+η) cosθ] cos(θ/2),  (21) 

 τ13 = – 2/3

2

2 r
LGB (1 + η) sin(3θ/2), τ23 = 2/3

2

2 r
LGB (1 + η) cos(3θ/2),   (22) 

 μ11 = 
r

BGL
2

2
 (1 + η) [2(1 – η) + (1 + η) (cosθ – cos2θ)] cos(θ/2),  

 μ21 = 
r

BGL
2

2
 (1 + η)2 (1 – 2 cos θ) sinθ cos(θ/2),  (23) 

 μ12 = 
r

BGL
2

2
 (1 + η) [4(1 – η) – (1 + η) (cosθ + cos2θ)] sin(θ/2). 

 
Note that the out-of-plane displacement ahead of the crack tip at small values of θ, namely for θ << 1, 
and the sliding displacement on the crack surface, at θ  = π, turn out to be opposite in sign, being  
 
 w(r, θ) / w(r, π) = – 0.75 (1 – η) θ < 0,               for θ <<1. (24) 
 
This feature is peculiar of fracture process in couple stress materials. Similar results also occur for 
Mode III crack in CS elasticity with a single material characteristic length [7] as well as for CS elastic-
plastic material behavior [9]. This unusual aspect seems to be due to the presence of microstructures 
(compositional grains). During crack growth the separation process between two material particles at 
the crack tip can be divided into two steps. In the first step the particles rotate with respect to each 
other. Only in the second step they move apart. The local rotation of grains and particles currently at 
the crack-tip produces opposite displacements ahead and behind the crack-tip under Mode III loading 
condition thus originating a scissors effect. 
As r goes to zero, the symmetric stress, skew symmetric stress and couple stress fields (21)-(23) 
behave as r1/2, r –3/2 and r –1/2, respectively. Therefore, for r < L the skew symmetric stress field gives 
the most singular contribution near to the crack tip. Conversely, for r > L the couple stress and skew 
symmetric stress fields become negligible with respect to the symmetric stress field, in agreement with 
the classical LEFM theory. It must be remarked that skew symmetric stresses do not contribute to the 
strain-energy density Φ, which is instead dominated by the weakly singular couple-stress field, so that 
the flux of energy toward the crack-tip remains finite for –1 < η < 1. It follows that the tractions level 



ahead of the crack tip increases with respect to the classical square root stress singularity given by 
the LEFM theory, due to the contribution of the skew-symmetric stress components. However, the 
generalized tractions occur with the opposite sign with respect to the classical mode III solution. 
The solution of the homogeneous asymptotic problem can be determined up to the amplitude factor B, 
which depends on far-field loading and specimen geometry. The constant B can be estimated by 
matching the asymptotic solution with the far-field conditions by using the path independent integral 
(14), in agreement with the classical LEFM approach. By choosing a circular contour around the crack 
tip and letting its radius tends to vanish, after the introduction of the asymptotic fields (19)-(23) in the 
integral (14), one obtains 
 
 J = (1 + η)(3 – η) π B2

 G L2,   (26) 
 
Therefore, the J-integral tends to vanish as the ratio η approaches the limit value –1. If the crack is 
subject to a remotely imposed classical KIII fields, related to the J-integral by KIII

2 = 2 G J, then the 
following relation between the amplitude constant B and the stress intensity factor KIII can be obtained  

 B = –
)3)(1(22 η−η+πGL

KIII .  (27) 

Note from Fig. 1 that the amplitude factor B monotonically decreases with the ratio η and it tends to 
infinity as η approaches the limit value –1. The negative sign in (27) has been chosen since the results 
(19), (22) and (24) reveal that the displacement w and shear stress τ23 ahead of the crack tip occur 
with the negative sign, unlike the classical Mode III crack-tip fields in non-polar materials. In this case, 
the shear stress ahead of the crack tip at θ = 0 switches sign from the remotely imposed KIII fields for 
large radial distance, namely for r >> L, where τ23 = KIII /(2πr)1/2 to the negative shear stress τ23 and 
the corresponding generalized traction p2 near to the crack tip 
 

 τ23 = –
)3(8

1
3III

η−π

η+

r
LK ,     p3 = – 3III 32

)3)(1(
r

LK
π

η−η+ , for r < L.  (28) 

 

 

Fig. 1 – Variation of the amplitude factor B* = BGl2/KIII with the ratio η. 
 
 
4. RESULTS 
The ratio η has a strong influence on the angular distribution of the crack tip fields. In particular, the 
angular variation of the out-of-plane displacement w, plotted in Fig. 2a for different values of the ratio 
η, shows that the displacements ahead and behind the crack tip are opposite in sign and their values 
are larger as η tends to the limit value –1. However, the displacement w behaves almost monotoni-
cally as η tends to the opposite limit value 1, more similarly to the classical LEFM solution.  
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Fig. 2 – Angular variation of (a) displacement w* = w GLr –3/2/KIII and (b) rotation ϕ2* = ϕ2 GLr –1/2/KIII. 
 
 

    
Fig. 3 – Angular variation of symmetric stresses σα3* = σα3 L r –1/2/KIII, for α = r, θ. 

 
 

   

Fig. 4 – Angular variation of skew-symmetric stresses τα3* = τα3 r 3/2/(LKIII), for α = r, θ. 
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Fig. 5 – Angular variation of couple stresses μαβ* = μαβ r 1/2/(LKIII), for α, β = r, θ, being μθθ = –μrr. 
 

The change of sign ahead of the crack tip denotes the occurring of a significant rotation of the material 
particles currently at the tip of the crack, much more accentuated for negative values of the ratio η, as 
it can be observed in Fig. 2b. 
Figures 3-5 display the asymptotic angular distributions of the cylindrical components of symmetric 
stress, skew symmetric stress and couple stress fields, for different values of the ratio η. All the 
functions are plotted in non dimensional form. Note that the curves for η = 0, namely L’ = 0, recover 
the results obtained for a single material length [7]. 
The angular variations of both symmetric and skew-symmetric stress components plotted in Figs. 3-4 
agree with the inversion of the displacement field ahead of the crack-tip. Indeed, both shear stress σ θ3 
and τθ3 are negative ahead of the crack tip, unlike the corresponding shear stress in the classical 
Mode III solution obtained by using the LEFM theory. This switch in the shear direction agrees with the 
findings in [7,9] for a single characteristic length.  
As the characteristic lengths ratio η is reduced from 0.9 to –0.9 the skew-symmetric stress 
components, plotted in Fig. 3, reduce and correspondingly the symmetric stress components, plotted 
in Fig. 4, increase.  
 

 
5. CONCLUSIONS 
The structure of asymptotic field near a mode III crack tip in couple stress elastic materials with two 
distinct characteristic lengths has been investigated in the present work. The obtained results show 
that both near tip symmetric stresses and couple stresses contribute to the crack tip energy release 
rate, and the sum of their contribution equals the remote energy release rate. Moreover, the use of the 
CS theory of elasticity developed by Koiter [2] for the analysis of the stress field near the tip of a 
propagating Mode III crack gives accurate predictions on the increase of the tractions level ahead of 
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the crack-tip occurring at very small distances from it, comparable with the size of the compositional 
grains. Indeed, the obtained asymptotic solution holds up to a distance to the crack tip much smaller 
than the lower radius of validity of the classical LEFM theory. Therefore, the present approach 
provides a means to link scales in fracture mechanics, namely from atomistic through microscale to 
macroscopic fracture, allowing to understand the detailed mechanisms by which fracture may grow 
and propagate in brittle materials with complex microstructure, up to the micron scale. 
 
 
ACKNOWLEDGMENTS 
Financial support from the Italian Ministry of Education, University and Research (MIUR) in the 
framework of the Project PRIN-2004 “Fracture toughness and macroscopic mechanical properties of 
materials with microstructure” is gratefully acknowledged. 
 

  
REFERENCES 
[1]  Y. Tajima, "Development of High-Performance Silicon Nitride Ceramics and their Applications", 

in: I.W. Chen et al. (eds.), Silicon Nitride-Scientific and Technological Advances, MRS 
Symposium Proceedings, MRS Pittsburgh (USA), Vol. 287, 1993, p. 189. 

[2] W.T. Koiter, “Couple-stresses in the theory of elasticity, I and II”. Proc. Ned. Akad. Wet. (B), Vol. 
67, 1964, p.17–44. 

[3] M. Hlavacek, "A continuum theory for fibre reinforced composites", Int. J. Solids Structures, Vol. 
11, 1975, pp. 199-211. 

[4] G. Adomeit, "Determination of elastic constants of a structured material", in Mechanics of 
Generalized Continua, ed. E. Kröner, IUTAM Symposium, Freudenstadt, Stuttgart, Springer 
Verlag, Berlin, 1967. 

[5] J.Y. Chen, Y. Huang, and M. Ortiz, “Fracture of cellular materials: a strain gradient model”, J. 
Mech. Phys. Solids. Vol. 46, 1998, pp. 789–828. 

[6] G. Herrmann and J. D. Achenbach, "Applications of theories of generalized continua to the 
dynamics of composite materials", in Mechanics of Generalized Continua, ed. E. Kröner, IUTAM 
Symposium, Freudenstadt, Stuttgart, Springer Verlag, Berlin, 1967. 

[7] L. Zhang, Y. Huang, J.Y. Chen and K.C. Hwang, “The Mode III full-field solution in elastic 
materials with strain gradient effects”. Int. J. Fracture, Vol. 92, 1998, p. 325-348. 

[8]  R. Lakes, “Experimental methods for study of Cosserat elastic solids and other generalized 
elastic continua”, in Continuum Models for Materials with Micro-structure, ed. H. Mühlhaus, J. 
Wiley, N.Y., 1995, p. 1-22.  

[9]  E. Radi and M,Gei, “Mode III crack growth in linear hardening materials with strain-gradient 
effects”. Int. J. Fracture, Vol. 130,  2004, p. 765-785. 

 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


