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ABSTRACT

Weibull theory neglects interaction between the defects and between defects and stress field, and accord-
ingly obtains that the strength of a material follows a Weibull distribution whose modulus is a material
constant, and whose mean value only is affected by the geometry and loading condition. For the limit case
of a cracked structure, this corresponds to a paradoxical zero mean strenght. A full account of interaction
requires direct Montecarlo simulations (each elasticity problem being solved by an efficient dual boundary
element formulation) and shows that mean value and scatter deviate from the theoretical ones. A simple
geometry has been considered where an infinite plate uniform remote tension σ∞, containing N collinear
cracks with statistical distribution of sizes and spacings.

1 Introduction
The strenght of brittle materials was studied by Weibull heuristically as one of the applications of his known
distribution [1], [2]. Much later, Freudenthal [3] showed then that this distribution can be explained with
the existence of flaws, neglecting mutual interaction in the stress fields surrounding each flaw, and applying
Griffith equation which specifies the critical length 2a of an elliptical crack in terms of the stress intensity σ

σ
√
a = k = const (1)

where the constant k depends on the Young’s modulus E, Poisson’s modulus ν and the rate of work Γc per
unit area of crack.
In particular, according to Weakest Link Theory (WLT), the fracture of a specimen is identified with

the unstable propagation of the most "critical" crack (the largest in a uniform stress field). Peirce [4] was
the first to formulate WLT and recognized the close relation of this model to the theory of extremes values,
stating that the distribution of smallest values tends in the limit of large number of samples to be one of the
two physically significant asymptotic distributions, regardless of the initial population (Gumbel, [5]). The
advantage of this approach results from the fact that only two kinds of physically significant distribution
functions of extreme values exist: one function represents the extremes of unlimited initial populations,
described by functions that converge towards zero for |x| → ∞ at least as fast as the exponential function
exp (−x); the other function represents the extremes of initial populations (called Cauchy type distributions)
that are limited for x = 0 and converge towards zero for |x|→∞ as fast as an inverse power law x−m. For
example, for a Cauchy type distributions of crack size a, the function distribution of the largest cracks was
derived by Frechet [6]

Fa (a) = exp

·
−
³a
u

´−α¸
(2)

with u characteristic size. By using Griffith’s equation, eqt. (1) can be converted into a function of the
strength distribution

Fσ (σ) = 1− exp
"
−
µ

k2

σ2u

¶−α#
= 1− exp

"
−
µ
σ

σ0

¶2α#
(3)

with σ0 = k/
√
u. Such distribution coincides with the two-parameter Weibull distribution with modulus

m = 2α. Considering also the effect of the volume, in terms of probability of survival R(V ) = 1− F (V ),

R(σ, V ) = exp

·
−
µ
σ

σ0

¶m
V

V0

¸
= exp [−nc (σ)V ] (4)
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The function nc (σ) =
1
V0

³
σ
σ0

´m
is a stress dependent “risk of rupture”, where V0 is representative of the

material volume, σ0 is a scale parameter and m is the shape parameter (known as Weibull modulus) which
is a measure of flaw size scatter. The volume component is easily derived as it is the only one satisfying the
WLT condition (see Freudenthal [3])

R(σ, nV ) = [R(σ, V )]n, (5)

Notice that this condition could be satisfied with nc (σ) any function of the stress σ. The Weibull distribution
simply corresponds to the case

nc(σ) =

µ
σ

σ0

¶m
or nc (σ) =

µ
σ − σu
σ0 − σu

¶m
(6)

where the latter case is for three parameter distribution. For non uniform stress field, we immediately derive
the product as an integral,

R = exp

·
− 1
V0

Z
V

µ
σ

σ0

¶m
dV

¸
(7)

However, writing WLT in this form is purely speculative as it corresponds to effectively assuming infinitesimal
volumes of material non interacting with each other – a distribution of cracks cannot be collapsed to a single
material point! Therefore, the larger the stress gradient, or the larger the cracks with respect to their distance,
the larger the deviation we expect from the simple Weibull case.
In order to see the effect of gradient, let’s consider the case of a macroscopic crack or sharp notch. Using

the Williams’ asymptotic stress field for a notch −α < θ < α,

σ(r, θ) = Ar−pg(θ) (8)

where A is an arbitrary constant, p is a dimensionless exponent and g is some function, we obtain

R = exp

·
− 1
V0

Z α

−α

µ
Ag(θ)

σ0

¶m
dθ

Z ∞
0

r1−mpdr

¸
(9)

Now, Z ρ2

ρ1

r1−mpdr =
ρ2−mp
2 − ρ2−mp

1

(2−mp)
(10)

There are two possibilities. If mp > 2, the integral will be unbounded when ρ1 → 0, whereas if mp < 2,
it will be unbounded when ρ2 → ∞. For mp = 2 it is unbounded at both limits. Thus, for all values of
m, p the probability of survival is zero, but for different reasons. For mp > 2, failure occurs because of the
high stress in the notch, whereas for mp < 2 it occurs because of the unbounded volume of lightly stressed
material away from the notch. In the latter case, bounded results would be obtained by considering the
actual stress field in the finite body.
However, the main conclusion is that the mean value of strenght is likely to be zero, whereas we expect it to

be finite (as after all the macroscopic crack is no qualitatively different from the distribution of cracks giving
the Weibull statistics). Also, there is no particular reason to expect the scatter to be given by the Weibull
modulus in the case of pure tension. In fact, Weibull modulus depends on loading and geometrical factors,
and is not a material constant as noticed already experimentally by various authors (Milella and Bonora,
[7]). In order to attack the problem of interaction, we start from a simple case, generating distributions of
collinear cracks in a large plate under uniform tension, and finding the strength distributions by an efficient
dual boundary element method (DBEM).

2 Formulation
The geometry of the problem is shown in Figure 1. The model is similar to that considered by Su-Lin Zhang
et al. [8]. In particular, N cracks are considered with arbitrary lengths (normally distributed) and equal
ligament sizes.
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Figure 1 : Infinite plate with N collinear cracks,
loaded on the edges by uniform remote tension σ∞.

The ultimate stress σr has been evaluated as

σr = σ∞
KIC

KI
(11)

where KI and KIC are, respectively, the stress and the critical stress intensity factor, and the results has
been interpreted by the Weibull distribution.
The equation that relates the Weibull modulus m to the number of experimental data (Smart et al. [9])

is
msd

m0
=

1p
Ng

(12)

where Ng is the number of data and m0 and msd are the expected value and standard deviation of the
Weibull modulus. Eq. (12) shows as the scatter of the modulus m decreases with the number of data Ng

and the larger is m the larger has to be Ng.
Figure 2a and 2b show the values of Weibull modulus obtained, respectively, by a three and two param-

eters regression on samples with Ng = 25 ÷ 500. For each specimen, the ligament size is distributed with
normal law with mean value c0/a0 = 0.5, and standard deviation csd = 0.2.

Figure 2a: Variation of the Weibull modulus Figure 2b: Variation of the Weibull modulus
with the number of specimens with the number of specimens
(three parameters distribution). (two parameters distribution).

The number Ng of specimens needed to identify with enough reliability the correct distribution can be
very large. However, we set Ng = 100 as the estimated error is around 4%. Further, the number of cracks
of the specimens is bounded to Nc = 50, finding a trade-off between reliability and computational costs.
In Figure 3 is shown the variation of the Weibull modulus m with the number of cracks Nc for specimen.
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Figure 3 : Variation of the Weibull modulus m
with the number of cracks Nc for specimen.

The values of m are in the range between 20.1 and 24.8. However, by generating samples of specimens
with the same average and standard deviation of cracks length, the statistical regression of the results yields
different values of m, as shown in Table 1.

Sample Weibull modulus m2p correlation factor r
1 37.1304 0.97367
2 34.8360 0.99458
3 31.8717 0.98224
4 33.8519 0.97897
5 33.9206 0.99280
6 32.8556 0.99162
7 38.3108 0.98981
8 32.3828 0.98344

Table 1 : Weibull modulus m2p for samples of specimens with the same average and standard deviation
(a0/c0 = 1; ads = 0.3).

Notice that the results show a variation of m of ±6.7%.

2.1 Cracks distributed with normal law

In this section a first investigation on the interaction effects between the cracks is shown. In Figure 1, we
considered 50 collinear cracks with identical ligament size c0. A normal distribution was considered for the
cracks length 2ai with fixed mean a0 and standard deviation asd. Thirty-six samples, each with Ng = 100
specimens, were generated with the following values of average a0 and standard deviation asd

a0/c0 ∈ [0.05; 0.1; 0.5; 1; 2; 4]

ads/c0 ∈ [0.1; 0.2; 0.3; 0.5; 1; 5]

The normal distributions with the lower values of a0/c0 and the larger of asd/c0, were truncated to avoid
the possibility of obtaining negative values of the ligament size.
In Figure 4 is shown the probability failure vs the normalized strength (σr = σ0KIC/KI) for a0/c0 = 0.5

and ads/c0 = 0.3.
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Figure 4 : Probability failure vs normalized strengt
(a0/c0 = 0.5 and ads/c0 = 0.3).

The numerical results are better fitted by the three parameters Weibull distribution than the normal and
two parameters ones. However, in the central zone, where is concentrated the larger number of data, the two
parameters distribution has a good correlation with the numerical results, and the simpler two parameters
distribution is used in the following.
Figure 5a and 5b show, respectively, the variation of the Weibull modulus m2p with the mean value a0/c0

and the standard deviation asd/c0.
Notice that increasing the average value of the cracks length the Weibull modulus increases, stating that

when the cracks length grows, the scatter of the material strength decreases. The modulus m2p grows more
quickly when the standard deviation decreases according to the fact that for standard deviation asd/c0 = 0,
the strength value becomes deterministic. Such behavior is underlined in Figure 5b, where the scatter of the
results increases (lower values of m2p) with the standard deviation.

Figure 5a: Variation of the Weibull modulus m2p Figure 5a: Variation of the Weibull modulus m2p

with tha average a0/c0. with tha standard deviation asd/c0.

3 Conclusions
The usual definition of the Weibull modulus as a material constants implicitely assumes that there is no
interaction between cracks, and that the stress field is sufficiently slowly varying, for the crack stress intensity
factors to depend only on the local value of stress. Although the Weibull distribution is very commonly
found in experiments (and indeed also in our numerical results), it does not necessarily have the parameters
expected from the statistics of extremes as applied to the distribution of cracks in the specimen. On the
contrary, for a given distribution of cracks, the stress field functional form and interaction of defects may
affect both mean and modulus.
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