
MIXED-MODE CRACK GROWTH IN TOUGHENED PMMA
L. ANDENA1, A. CORIGLIANO2, R. FRASSINE1, S. MARIANI2

1Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano (ITALY)
2Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Milano (ITALY)

ABSTRACT

Experimental results concerning mixed-mode crack growth in PMMA specimens are presented, together with numerical
simulations of the whole fracture process. The mixed-mode tests were conducted on single edge notched specimens
subject to three point bending loading conditions. The mode-mixity of the fracture loading was obtained by means of
a notch offset with respect to the mid-span cross section. A generalized finite element approach was adopted for the
numerical simulations, coupled with a local description of the fracture process based on a mixed-mode cohesive law.

1 INTRODUCTION
Mixed-mode fracture is an important issue in many engineering applications, and the number of the pub-
lished research on the subject has been steadily growing in the most recent years [1, 2, 3, 4, 5]. In many
practical situations, even components having relatively simple geometry and loading conditions (like films,
composite plates and adhesive joints) may undergo mixed-mode fracture due to different combinations of
service loadings and hygrothermal stresses. Under these conditions, crack initiation will be associated to
different critical strain energy release rates at varying the mode-mixity ratio. As far as damage-tolerant
design is concerned, the need for quantitative prediction of the remaining lifetime of a component also
requires the crack propagation stage to be analysed. This may take place along a very complex crack path
depending on material microstructure, loading conditions and component geometry, usually undergoing a
transition from shear to opening fracture mode for most practical situations.
In the present paper, the mixed-mode fracture behaviour of a rubber-modified polymetyl methacrylate was
characterised using asymmetric three point bending testing geometry. The fracture behaviour was simulated
using a generalized finite element approach coupled with a local description of the fracture process using a
specially formulated mixed-mode cohesive law, and the results were compared in order to get some insights
about the transition from stable to unstable crack propagation.

2 MIXED-MODE THREE POINT BENDING TESTS ON PMMA
The material used in this study was a rubber toughened polymethyl methacrylate (PMMA) with 22 wt% of
acrylic rubber, supplied in form of extruded sheets with nominal thickness B = 8 mm. The glassy matrix
has weight and number average molecular weights of 134000 and 68000, respectively. The glass transition
temperature of the matrix is 105 ◦C, while that of the rubbery phase is -30 ◦C.
A three point bending (TPB) test configuration was considered, using single edge notched specimens. The
geometry of the specimens is shown in Fig. 1. The specimens has width W twice the thickness B and the
span S is four times W .
Notching was performed in two stages. In the first one a notch was made with a 0.015 mm radius blade
moving alternatively into the specimen. In the second one, the same blade was pushed into the previously
prepared notch after cooling the material to -40 ◦C so as to propagate a short brittle crack: the blade works
as a wedge and causes the formation of a natural crack ahead of the machined notch. The highly stressed
zone that developed ahead of the notch tip during the machining operation was removed by annealing the
specimens at 90 ◦C for 5 h and then cooling it to 23 ◦C at a rate of 1 ◦C/min [6]. Two different initial notch
depths a0 were considered, corresponding to a0/W ratios of 0.3 and 0.6. In order to ensure mixed-mode
crack loadings, the notches were performed at a varying distance d from the mid-span cross section of the
specimens: three different offset ratios χ ≡ 2d/S of 0.25, 0.50 and 0.75 were used.
Fracture testing was conducted at 23 ◦C and at constant crosshead displacement rate du/dt = 5 mm/min
with an Instron 1185 dynamometer. A 10 kN load cell was used to measure the load P .
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Figure 1: mixed-mode TPB test. Test set-up, geometry and notation.

3 NUMERICAL SIMULATIONS
The extended finite element method for quasi-brittle fracture proposed in [7, 8] was here adopted for the
numerical simulation of the mixed-mode TPB tests discussed in Section 2.
Let us consider a two-dimensional body Ω with boundary Γ = Γ t ∪ Γu: tractions are prescribed on Γt and
displacements on Γu. Let Γd be a propagating discontinuity locus inside Ω; along Γd a cohesive interaction
between the two flanks exists in the process zone (PZ).
The equilibrium conditions for Ω are:

CTσ + b̄ = 0 in Ω\Γd; (1)

Nσ = t̄ on Γt; (2)

Mσ = −t+ on Γ+
d , Mσ = t− on Γ−

d . (3)

Here: σ is the stress vector; b̄ and t̄ are the prescribed external loads per unit volume and surface, respec-
tively; C is the differential compatibility operator; N and M are matrices containing the components of
the unit outward normal n to Γ and of the unit normal m to Γ d. Γ+

d and Γ−
d respectively define the two

flanks of Γd acted upon by the traction vectors t+ and t−. The equilibrium across Γd thus reads:

t ≡ t− = −t+. (4)

The linearized compatibility conditions in Ω\Γd and along Γu are given by:

ε = Cu in Ω\Γd; (5)

u = ū on Γu, (6)

ε and u being the strain and the displacement vectors, respectively, and ū the assigned displacements along
Γu. The displacement discontinuity [u] across Γd can be expressed as:

[u] = u

∣∣∣∣
Γ+

d

− u

∣∣∣∣
Γ−

d

. (7)
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Figure 2: mixed-mode effective cohesive law.

As far as the constitutive law is concerned, the bulk material in Ω\Γd is assumed to behave elastically, i.e.:

σ = DΩε in Ω\Γd, (8)

DΩ being the bulk stiffness matrix.
A cohesive model is adopted for the PZ. Following [9], an effective displacement discontinuity [u] is

defined according to:
[u] =

√
[u]2n + β2[u]2s, (9)

where: [u]n and [u]s are, respectively, the opening and sliding components of the displacement discontinuity
vector [u]; β2 is a coupling coefficient that represents the ratio between mode II and mode I fracture energies
[10, 11]. The effective cohesive law is then defined as in Fig. 2, with a linear softening envelope and
an effective fracture energy Gc = tM [u]U/2. Loading/unloading conditions in the softening branch are
formulated according to a damage law, such that unloading to the origin of the t − [u] plane (see Fig. 2) is
guaranteed (details can be found in [7]).
At fixed Γd, the weak form of the governing relations, account taken of the constitutive laws for the bulk
material and for the cohesive PZ, reads:

find u ∈ U :
∫

Ω\Γd

εT (v)DΩε̇ (u̇) dΩ +
∫
Γd

[v]TRTDΓR[u̇] dΓd =
∫

Ω\Γd

vT ˙̄b dΩ +
∫
Γt

vT ˙̄t dΓt ∀v ∈ U0,

(10)

where: a superposed dot stands for rates; U is the space of admissible displacements u in Ω, i.e. such that
u = ū on Γu, u possibly discontinuous on Γd; v ∈ U0 (with zero prescribed displacements on Γu) is the
test function; DΓ is the cohesive tangent stiffness matrix; R is the orthogonal global-local mapping along
Γd.
To simulate cohesive crack growth in the frame of the extended finite element method, the displacement
field is assumed [7, 8]:

uh (x) =
∑
i∈I

φi (x)u0
i +

∑
j∈J

H (x)φj (x)uE
j , (11)

where: the set I collects all the nodes, whose overlapping supports completely cover Ω, while J gathers only
those nodes whose supports are even partially cut by Γd; u0

i are the customary nodal degrees of freedom
and uE

j are the additional ones; φi is the piece-wise linear nodal shape function; H (x) is the generalized
Heaviside step-function:

H (x) =
{

+1 if (x − x∗)T
m > 0

−1 if (x − x∗)T
m < 0

(12)
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Figure 3: mixed-mode TPB test. Comparison between experimental (continuous lines) and numerical (filled
symbols) load-displacement plots: (a) a0/W = 0.3; (b) a0/W = 0.6.

x∗ being the closest point projection of the generic point x ∈ Ω onto Γ d (see also [8]). This discretization
gives rise to a piece-wise linear continuous displacement field in Ω\Γd and a piece-wise linear displacement
discontinuity along Γd, provided that the Γd tip is always located at the edge of an element.
To propagate Γd, the stress state ahead of the current crack tip is recovered in a patch of elements whose
integration points are located inside a circle centered at the Γd tip and with a radius of up to nr times the
characteristic mesh size (in the forthcoming examples nr = 8 was used). A fourth-order complete polyno-
mial function is best-fitted to the recovered stress field and, on its basis, crack growth direction is assumed
perpendicular to the maximum in-plane principal stress σp at the crack tip. According to this criterion, the
crack starts propagating as soon as σp exceeds the tensile strength tM ; at fixed loading conditions, the crack
then grows until the condition σp < tM is satisfied.

4 RESULTS
To assess the capability of the proposed extended finite element method to simulate mixed-mode crack
growth, results for the TPB tests of Section 2 are presented.
The PZ cohesive law was calibrated by matching the experimental and numerical load vs displacement
plots in the case a0/W = 0.3 and χ = 0.25, obtaining: tM = 50 MPa, Gc = 2.5 N/mm. The elastic
properties of the bulk were assumed: Young’s modulus E = 1900 MPa, Poisson’s ratio ν = 0.39. These
parameter values guarantee a good agreement between experimental data and numerical outcomes, both in
the hardening and in the softening regimes.
As for the load vs displacement relation, it emerges that only for a 0/W = 0.6 and χ = 0.50 the numerical
response is significantly more brittle than the experimental one, and characterized by the sudden drop of
the plot at u ∼= 1.4 mm. In all the other cases, the eventual steep softening branch is correctly captured and
linked to a sudden, unstable propagation of the crack after an initial stable phase.
As far as the failure mode is concerned, in Figs. 4 and 5 the final crack paths are reported for a 0/W = 0.3
and 0.6, respectively. It can be seen that propagation of the crack within the elements allows to obtain
results completely independent of the background mesh.
As already noted in [7], by increasing the offset ratio χ, for any a 0/W , the test is characterized by: an
increased initial stiffness (slope of the P − u curve) in the hardening regime; a transition from a whole
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Figure 4: mixed-mode TPB test. Simulated crack paths for a0/W = 0.3: (a) χ = 0.75; (b) χ = 0.50; (c)
χ = 0.25.

stable to a stable-unstable fracture process and, hence, to a sudden drop of the load in the softening regime;
an increased effect of the mode II loading at the crack tip, as denoted by more inclined crack paths with
respect to the initial notch.
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