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ABSTRACT
A new model of strain localization and damage band formation, inspired by population dynamics, is
introduced in this paper. The basic assumption is that strain at nanoscales can be described by means of a
kinetic model of molecular interaction. The strain energy induced by external sources concentrates at a
numerable set of mobile entities, hereby called “strainions”. Under normal conditions these strain energy
accumulators are uniformly distributed within the body. If the energy level between some molecules
increases too sharply, for instance due to increasing strains, the strainions begin to dissipate heat energy and
strain localization may occur. By coupling the Fick’s law for diffusion and a classical conservation law for
heat production, the random motion of heat energy can be modelled. A number of physical parameters are
introduced in the model. These are a proportionality constant k that measures the strength of heat attraction
(called the “thermotaxis” coefficient), a “motility” constant c, and a diffusion constant D. A differential
system of two nonlinear equations is obtained, which admits the uniform solution, corresponding to the
equilibrium state. Then, we investigate, through the method of small perturbations, if a sudden small
disturbance to the uniform state remains local and extinguishes, or propagates in space and time, leading to
strain localization and damage. We found that strain localization occurs if the motility c of the strainions or
the decay rate of the heat concentration are small or, inversely, if the rate of heat production or the
thermotaxis coefficient k are large.

1  INTRODUCTION
Pattern formation in Nature is often the result of system instabilities. In this context, strain
localization and damage in geomaterials are multiscale phenomena. At the macroscales, cohesive
crack propagation is characterized by strain softening and energy dissipation. A plenty of models
has been proposed to explain cohesive cracking at the meso-level (i.e., at the level of the grains),
taking into account several effects like strain gradients [1], bridging and friction. At the nano-scale
of observation, band formation is observed (Figure 1), whose fractal structure suggests the
existence of self-organization [2].

Figure 1. Slip lines in copper at the sub-micron scale (after Kleiser & Bocek, [3])
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At nanoscales, surface effects are predominant, i.e. surface tension and friction affect the
mechanical response [4]. Moreover, heat production occurs at the slip bands, and electromagnetic
fields interact with the strain energy. There is a strong need to understand the mechanical
properties of nanostructures. In particular, the mechanical stability of nanotubes and nanowires
under severe stress-strain conditions needs to be assessed.

In this paper, a new model of strain localization and damage band formation is introduced.
The theoretical framework is inspired by population dynamics [5]. The basic assumption is that
strain at nanoscales can be described by means of a kinetic (diffusive) model of molecular
interaction. Instead of the classical interatomic potentials field, we assume that the strain energy
induced by external sources (loads, displacements or whatever) concentrates at a numerable set of
mobile entities, hereby called “strainions”. Under normal conditions (e.g., if molecular spacing
and thermal fluctuations do not exceed certain values), these strain energy accumulators are
uniformly distributed within the body (Figure 2a). Continuous energy fluctuations at nanoscales
cause a diffusion process: the strainions move away from regions of high strain concentration to
regions of low strain concentration. Macroscopically, this equilibrium state corresponds to the
homogeneous deformation of the continuum.

If the energy level between some molecules increases too sharply, for instance due to
increasing strains, the strainions begin to dissipate heat energy. Such an heat source acts as an
attractant for other strainions, due to the overall tendency to a minimum of the total energy of the
system (what is usually called stress redistribution at macroscales). Therefore, strainions move
toward the high concentrations of heat and tend to form aggregates (Figure 2b). These aggregates
are called slip bands, i.e., regions of high strain localization and damage. By means of perturbation
theory, it is possible to determine the conditions for such instability.

2. THE ONE-DIMENSIONAL KINETIC MODEL OF STRAINIONS
In order to formulate a simple model, we assume that changes take place only in one spatial
dimension (z) and that all parameters are constant in any cross-section. Let n(z,t) be the number of
strainions per unit area at position z and at time t, and let h(z,t) denote the concentration of heat
production at (z,t). The time rate of change of the number of strainions in (z1, z2) must equal the
number of strainions entering the region at z=z1 minus the number of strainions leaving the region
at z=z2. If Y(z, t) denotes the flux at z at time t, then the conservation law can be written as:

† 

d
dt

n(z,t)dz
z1

z2

Ú = Y(z1,t)- Y(z2 ,t) = -
∂
∂z

Y(z,t)
z1

z2

Ú dz .                 (1)

If the functions are assumed to be smooth, the time derivative can be pulled inside the first
integral. For an arbitrary interval of integration we get the differential form:

† 

∂n
∂t

+
∂Y
∂z

= 0         (2)

The constitutive form of the flux Y comes from the assumptions outlined in the
introduction. Accordingly, Y is the sum of a flux Yd due to random diffusion of the strainions and
a flux Yh due to attraction induced by heat production, that is: 

† 

Y = Yd + Yh .
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In the homogeneous condition, the strainions move from the regions of high concentration to those
of low concentration of n, so that Yd is proportional to the gradient of n(z,t):

† 

Yd = -c ∂n
∂z

(z,t),            (3)

where c>0 is a constant of strainion motility. In the theory of diffusion, the above equation is
named Fick’s law. The expression for the other flux contribution can be easily determined if we
state that Yh is proportional to the gradient of heat production. Moreover, the heat being an
extensive quantity, Yh should also be proportional to the number n of strainions. Therefore we can
write:

† 

Yh = kn(z,t) ∂h
∂z

(z,t),         (4)

where k>0 is a proportionality constant that measures the strength of heat attraction (call it a
“thermotaxis” coefficient). Combining the two flux contributions we get the following nonlinear
partial differential equation:

† 

∂n
∂t

=
∂
∂z

c ∂n
∂z

- kn ∂h
∂z

Ê 

Ë 
Á 

ˆ 

¯ 
˜ .              (5)

Because there are two unknown functions (i.e. n(z,t) and h(z,t)), another equation is still
required. This is a conservation law for heat production:

† 

∂h
∂t

= -
∂jh

∂z
+ H ,                  (6)

where j(z, t) represents the heat flux via diffusion and H(z, t) denotes the amount of heat
generated at time t per unit volume.

The random motion of heat energy can be modelled, similarly to the previous
assumptions, by means of a proportionality of flux to the gradient, through a diffusion constant D,
i.e.:

† 

jh = -D ∂h
∂z

,         (7)

whereas the source term H can be conveniently written as:

† 

H = q1n - q2h ,         (8)

where q1 is the rate of heat production of the strainions and q2 is the rate of heat diffusion outside
the body. The second equation of the problem is therefore obtained as:

† 

∂h
∂t

= D ∂2h
∂z2 + q1n - q2h .          (9)
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The differential system formed by eqs. (5) and (9) has the uniform solution: n(z,t) = n 0 and
h(z,t)=h0 - where n0 and h0 are constants - provided that q1n0 = q2h0. The uniform state (Figure 2a)
is therefore an equilibrium solution.

Figure 2. Uniformly distributed strainions (a) and onset of slip band formation (b).

3. ONSET OF STRAIN LOCALIZATION AS AN INSTABILITY OF THE UNIFORM STATE
We investigate now, through the method of small perturbations, if a sudden small disturbance to
the uniform state remains local and extinguishes, or propagates in space and time, leading to strain
localization and damage. If n* and h* are small departures from the equilibrium state, we can put
the quantities n(z,t)= n0 + n*(z,t) and h(z,t)=h0 + h*(z,t) into the differential system, obtaining:

† 

nt
* =

∂
∂z

cnz
* - kn0hz

* - kn*hz
*( ) ,                  (10-a)

† 

ht
* = Dhzz

* + q1n
* - q2h

*.            (10-b)

Since the quadratic term 

† 

n*hz
* is smaller than the linear terms, eq. (10-a) can be linearized into:

† 

nt
* = cnzz

* - kn0hzz
*                         (11)

which is the companion to eq. (10-b). The coupled partial differential equations are diffusion-like
and therefore admit a solution in the form of a Fourier mode:

† 

n* = C1e
ateibz ,                  (12-a)

† 

h* = C2e
ateibz ,            (12-b)
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where C1, C2, a and b are constants. If a>0 the Fourier mode for the perturbation would grow in
time and thus the uniform state would be unstable to small perturbations. In order to check the
existence of solutions like eqs. (12) we insert them in the differential system, obtaining a
homogeneous system of algebraic equations for C1 and C2:

† 

a + cb 2( )C1 - kn0b
2C2 = 0 ,             (13-a)

† 

-q1C1 + a + Db 2 + q2( )C2 = 0 .             (13-b)

Nontrivial solutions require that the determinant of the coefficient matrix vanishes. This yields a
quadratic equation with two real roots in a. We can conclude that a<0 if and only if:

† 

cDb 2 + q2c > q1kn0 ,                   (14)

which can be considered as a necessary and sufficient condition for stability. The above condition
has a better choice to be violated when the wavenumber b of the Fourier mode decreases to zero.
In fact, if:

† 

cq2 < q1kn0 ,                 (15)

equation (14) will always be violated for wave numbers b close to zero. Therefore, instability
arises as a product of long wavelength perturbations (Figure 2b).

Physically, condition (15) implies that strain localization will occur if the motility c of the
strainions or the decay rate q2 of the heat concentration are small or, inversely, if the rate of heat
production q1 or the thermotaxis coefficient k are large. The above conclusions may give some
hints to explain the relatively high stability of carbon nanotubes as compared, e.g., to golden
nanowires.
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