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ABSTRACT
A weakest–link model has been developed to assess the fatigue limit of three different strip steels. The
analysis is based on a discretization of a component into FEM elements whose failure is correlated to the
presence of internal inclusions inside the steel. The analysis of the inclusions content is carried out by means
of the Statistics of Extremes: the three strips are then compared in terms of cleanliness and fatigue properties.
For each steel fatigue limit distribution is obtained with a weakest-link model of the fatigue specimens: the
obtained results are close to experimental outcomes.

1  INTRODUCTION
Defects, inclusions and inhomogeneities are detrimental to fatigue strength of steels. The
behaviour of materials containing defects has been explained by Murakami [1], who clearly
showed that the fatigue limit of specimens containing micro-holes is characterised by the presence
of non-propagating cracks. It can then be said that the fatigue limit is not a limit stress for
‘nucleation’ but it rather is the threshold stress for non-propagation of the small crack which
emanated from the original defects. Fatigue strength in presence of defects is characterised by the
so-called Kitagawa diagram (i.e. the variation of fatigue strength with crack size), which is shown
in Figure 1. Its main features are: i) fatigue strength tends to increase by decreasing defect (or
crack) size; ii) there is a critical size – acr – below which defects (or cracks) are non-damaging and
fatigue strength corresponds to the limit stress amplitude of smooth specimens. For defects larger
than – acr – in the region of short cracks, the relationship between the fatigue limit and the
maximum square root of the area of the internal defect is expressed by Murakami and Endo model
(Murakami [1] ):
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where C is constant (1.43 for surface and 1.56 for internal defects respectively) and √area is the
square root of the defect area projected onto a plane perpendicular to applied stress.

After creating a FEM model of a component and using the Statistics of Extremes to asses the
statistical distribution of inclusions inside the material, the fatigue limit of the component can be
calculated developing a weakest - link model considering that the failure of a finite element, in
presence of a detrimental defect inside it, causes the failure of all the component . The analysis has
been applied to three high strength strip steels produced by Sandvik Materials Technology.



Figure 1: Kitagawa diagram and determination of alim

2  WEAKEST – LINK MODEL
A weakest-link model reproduces a system that fails just if one of its elements fails. If we consider
a system consisting of n  series elements (see Figure 2 a) we define:
- ifP , the probability of failure of an element,
- fP the probability of failure of the system,
- iR the reliability of an element,
- R the reliability of the system,
then:
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Figure 2: The weakest – link model a) and its application to the fatigue limit calcula
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     Considering specimens used in mechanical tests and dividing them in finite elements, the
condition of failure is when the stress of a finite element overtakes its fatigue limit.
Correspondingly the failure probability is the probability of the maximum expected inclusion in
the element to exceed the critical inclusion corresponding to the limit stress through Murakami –
Endo formula (Eq. (1)) in Figure 2. In particular, labelling with – a – the defect size (expressed in
terms of √area):
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where Gi(a) is the cumulative probability function of the maximum inclusions in the i-th finite
element, calculated from the microscope analysis considering the dimension of the finite element
(Beretta et al. [2]).

3  APPLICATION TO THREE MATERIALS
Three different strip materials have been investigated through the Statistics of Extremes using a
weakest–link model to asses their fatigue limit. The analysed samples are the ones used for the
fatigue characterisation.
The three materials called A, B and C differ for the mechanical properties (see Tab.1), the strip
thickness and the inclusion content, that was investigated by adopting the ‘extreme value inclusion
rating’.

Table 1: Properties of the strips and fatigue specimen

Material Thickness [ ]mm HV [ ]2/ mmkgf Rm [ ]MPa

strip A 0.305 539 1705
strip B 0.305 556 1744
strip C 0.381 581 1649

The analysis of the inclusions content is carried out on polished section by detecting the maximum
inclusion within control areas 2

0 400 mmS =  ( ‘block maxima’ sampling  [3]) and 40 maxima are
collected for each strip. Data collected are plotted in a Gumbel probability plot (Figure 3) and
interpolated with a Gumbel equation (Murakami [3] ) for strip B:
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where λ,δ respectively are location and scale parameters. In the case of strips A and C, which
show a kink in the Gumbel plot (Figure 3), inclusion data were analysed with Competing Risks
model (Beretta et al. [4] ):
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Considering the data collected in a control volume 0V  (Murakami et al. [5] ) o oV S h= ⋅ , where
h is the average dimension of extreme inclusions [3], the distributions of maximum inclusions
inside a finite element with a volumeV  can be obtained using :
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and the reliability of i-th element can be obtained by Eq. (3).

Figure 3: Inclusions distribution of the three strips

4  FEM ANALYSIS AND RESULTS
A finite elements analysis for the strips subjected to axial test has been carried out simulating loads
and boundary conditions of the fatigue tests. The resulting map of maximum principal stress
[ ]MPa  is shown in Figure 4.
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Figure 6: Determination of the dangerous defects from the Kitagawa diagram

Table 2 shows how, despite having the best mechanical properties (see Table 1), strip B is
penalized by the highest density of inclusions bigger than the critical dimension, so that strip C is
almost equivalent for the fatigue limit properties even showing a higher volume, that is a higher
probability in finding inclusions.

5  CONCLUSIONS
The weakest – link model is able to reach results comparable to the ones obtained at mechanical
tests but have a slightly smaller mean value and a narrower scatter, since residual stresses and
superficial defects are not considered. Moreover it permits to make a comparison among the
fatigue limit properties of the three strips considering the influence of the different cleanliness of
the materials. Despite the absence of big inclusions, strip B is penalized by the presence of the
highest density of inclusions mµ20<  that are the most detrimental ones: the fatigue properties of
the strips are more influenced by the density of a critical dimension of the inclusions rather than by
the biggest size.
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