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ABSTRACT

In this paper, the S-theory is applied to determine crack initiation and direction for T-
beams. It makes use of a parameter called strain-energy-density factor, S, which is a
function of the stress intensity factors. A simple method for obtaining approximate
stress intensity factors is also applied. It takes into account the elastic crack tip stress
singularity while using the elementary beam theory. Basic loading conditions are
studied.

SOMMARIO

In questo lavoro, viene impiegata la teoria basata sul “fattore densità di energia di
deformazione”, S, per determinare le condizioni iniziali di propagazione in una trave
fessurata con sezione a T. Tale parametro dipende dai fattori  di intensificazione degli
sforzi ( Stress intensity factors).
Viene inoltre proposto un metodo approssimato per la valutazione dei fattori di
intensificazione degli sforzi, basato sulla condizione di equivalenza tra le caratteristiche
della sollecitazione e la distribuzione delle tensioni in corrispondenza della sezione
fessurata.

INTRODUCTION

In this paper the method advanced by Nobile [1] is used to determine crack initiation
and direction for cracked  T-beams .
As well known, Linear Elastic Fracture Mechanics is widely used to describe many
aspects of crack behavior. Knowledge of the stress intensity factors plays an important
role in fracture control. In structural applications, combined standard loading conditions
often involve simultaneously KI, KII and KIII . Within the framework of brittle fracture,
the well-known “Strain energy density factor theory”[2]  allows to predict unstable
crack growth in mixed mode. It makes use of a parameter called strain-energy-density
factor, S, which is a function of the stress intensity factors.
For general loading, the strain energy density factor is
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with ν being the Poisson’s ratio and µ the shear modulus of elasticity.
Stress intensity factors for many configurations are available. In most cases the results
were obtained by means of analytical and numerical methods. In many cases the results
were obtained by finite element methods and boundary  element methods .
Experimental methods have been applied to simple cases in order to determine the
fracture toughness KIC of engineering materials. Solutions for many structural
configurations are not available in the handbooks.
Simple engineering methods which allow a fast but approximate determination of the
stress intensity factors are highly valued to a design engineering.
Remarkably simple methods for close approximation of stress intensity factors in
cracked or notched beams were proposed by Kienzler and Herrmann [3] and by Nobile
[1]. The former has been based on elementary beam theory estimation of strain energy
release rate as the crack is widened into a fracture band, the latter has been based on
elementary beam theory equilibrium condition for internal forces evaluated in the cross
section passing through the crack tip, taking in account the stress singularity at the tip of
an elastic crack.
In this paper the latter method [1] is employed to compute stress intensity factors and to
determine crack initiation and direction for cracked T-beams.  Three basic loading
conditions have been studied.

APPROXIMATE EVALUATION OF STRESS INTENSITY FACTORS

Consider a straight  beam of constant cross section. The z-axis coincides with the
geometrical axis, and the x and y-axes coincide with the principal axes of the cross
section.  The stress components due to stress resultants are well known. Suppose that
the presence of an edge crack of initial length a doesn’t alter the stress resultant on the
cross section passing through the crack tip. The singular stress distribution at the crack
tip takes the form

(2)

with the condition that s
ijσ  acts at a distance r=b from the tip. The nominal stress is

evaluated by the known stress distribution on the reduced solid cross section passing
through the crack tip (ligament). The stress distribution doesn’t take into account the
presence of the crack. Then, the equivalent condition between singular stress and
nominal stress resultant at the crack tip determines Ki approximately. Note that Ki-
values are better approximated for b< a such that the elastic singularity governs stresses
at a distance from the tip lower compared to  the geometric dimension of crack length.
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BENDING

First consider the case when the beam is subjected to a bending moment Mx. The
equivalent condition between singular stress and nominal stress resultant at the crack tip
determines KI approximately:
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where hBha /,/ == βα  and hd /=δ . A plot of normalized stress intensity factor as

a function of a/h for different values of  β  and δ  is shown in Fig.1.

Figure 1: Stress-intensity factor vs. a/h for T-beam in bending.

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized crack length a/h

G
eo

m
e

tr
ic

 f
u

n
c

ti
o

n
 F

( α ααα
, β βββ

, δ δδδ
)

B /h=0.25  d/h=0.025

B /h=0.3 d/h=0.03

B /h=0.4 d/h=0.04

B /h=0.5 d/h=0.05

B /h=0.6 d/h=0.06

B /h=1  d/h=0.1

x

y

y

B

d

d

a

f

h1

( )δβα ,,F

h

M
K 1

2
5

x
I =

x  

y  

y  

B  

d  

d  

a  

 f  

h  
1  



Information on the direction of crack initiation can be obtained from the strain energy
criterion [1]. It is assumed that the crack tends to run in the direction of Smin. Setting
KII=0 and KIII =0 in eq.(1) and putting eq.(3)  in eq .(1), S can be obtained. The relative
minimum of S corresponds to θ=0. A plot of normalized strain-energy-factor as a
function of  θ is shown in Fig.2.

Figure2:Normalized strain energy-density factor vs. angle θ.

SHEAR LOADING

Consider the case when the beam is subjected to a shear loading Vy. The equivalent
condition between singular stress and nominal stress resultant at the crack tip
determines KII  approximately:
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A plot of normalized stress intensity factor as funcion of a/h for different values of  β
and δ  is shown in Fig.3.
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Figure 3: Stress-intensity factor vs. a/h for T-beam in shear.

Information on the direction of crack initiation can be obtained from the strain energy
criterion [1]. It is assumed that the crack tends to run in the direction of Smin. Setting
KI=0 and KIII =0 in eq.(1) and putting eq.(4)  into eq .(1), S can be obtained. The
relative minimum of S corresponds to θ=cos-1[(1-2ν)/3]. A plot of normalized strain-
energy-factor as a function of  θ is shown in Fig.4.

Figure4:Normalized strain energy-density factor vs. angle θ.
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TORSION

Consider the case when the beam is subjected to a torque T. The equivalent condition
between singular stress and nominal stress resultant at the crack tip determines KIII

approximately:
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A plot of normalized stress intensity factor as funcion of a/h for different values of  β
and δ  is shown in Fig.5.

Figure 5: Stress-intensity factor vs. a/h for T-beam in torsion.
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MIXED MODE

Consider the case where Mx and Vy are present. Setting KIII=0 in eq.(1) and putting
eqs.(3) and (4) into eq.(1), S can be obtained as

(6)

with 
x

y

M

hV
=α .

Assume that the crack would initiate in the direction of Smin , i.e. 0
S =

∂
∂
θ

. This

corresponds to the direction where dilatation would dominate. Two plots of normalized
strain-energy-density factors as a function of θ for constant ν and different values of α
are shown in Figs. 6 and 7. Crack instability is then assumed to take place when Smin

equal to a critical value Sc that depends only on the material.

Figure6:Normalized strain energy-density factor vs. angle θ.
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Figure7:Normalized strain energy-density factor vs. angle θ.
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