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ABSTRACT

Strain-gradient effects on the asymptotic near-tip stress and velocity fields of a crack
propagating steadily and quasi-statically in an elastic-plastic material displaying linear
hardening are highlighted. The flow theory version of couple stress plasticity is adopted
for the constitutive description of the material. Under mode I crack propagation a
substantial increase of the stress singularity is observed and, thus, of the traction level
ahead of the crack-tip, whereas an increase in the shear traction ahead of the crack-tip is
noticed under mode II loading conditions.

SOMMARIO

Lo stato tensionale all'apice di una frattura che si propaga in un materiale duttile è
fortemente condizionato dalla presenza di "strain gradient" dovuti a dislocazioni
geometricamente necessarie. In questa nota si studia l'entità di questa influenza
adottando la teoria della plasticità "couple stress" recentemente proposta per lo studio
degli effetti dimensionali nei metalli. L'incremento di singolarità è evidente soprattutto
in modo I, mentre in modo II si nota un aumento del valore delle tensioni tangenziali
davanti all'apice.

INTRODUCTION

Due to strain gradients which arise for non-uniform deformations, ductile materials
display size effect when deformed at the micron scale, as confirmed in a large number
of experimental tests (see [1] for a review of the subject). However, conventional
plasticity theories are unable to explain this phenomenon. Similar remarks apply to
fracture mechanics. Elssner et al. [2] showed that when the crack growth mechanism
involves cleavage or decohesion at the atomic scale, the measured stress level is of the
order of 10 times the tensile yield stress, a value sensibly high compared to the classical
predictions [3, 4]. Therefore, for refined analyses at the micron scale, it becomes
necessary to adopt enhanced constitutive models, which take into account the
microstructure of the material and the presence of strain gradients.
In this note, near-tip fields for plane strain mode I and mode II crack growth are
calculated by employing the couple stress plasticity proposed by Fleck and Hutchinson
[5]. This model is a generalization of the classical J2-flow theory obtained by adding the
effects of strain rotation gradients, which are significant within a zone of radius l,



where l is a material characteristic length entering in the formulation (typically of the
order of few microns for ductile solids). Outside of this area the strain gradients become
negligible and the adopted constitutive model reduces to the conventional flow theory.

CRACK PROPAGATION PROBLEM

The problem of a plane crack propagating at constant velocity V along a rectilinear path
in an infinite medium is considered. A cylindrical co-ordinate system (r, θ, x3) moving
with the crack-tip towards the θ = 0 direction is considered, where the x3-axis coincides
with the straight crack front. The condition of steady-state crack propagation yields the
following time derivative rule, which holds for any scalar function φ
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where r and θ are the polar coordinates in the plane orthogonal to the x3-axis.
The considered constitutive model refers to the flow theory version of the strain
gradient plasticity presented by Fleck and Hutchinson [5]. This model fits within the
general framework of couple stress theory and involves a single material length scale l,
specifying the order of non-uniform deformation at which the effects of strain gradients
become significant, and thus is generally small (about 4 µm for copper and 6 µm for
nickel).
According to the couple stress model [6, 7], a surface element of a body with unit area
can transmit a force traction vector t and a couple stress traction vector q. These surface
forces t and q can be expressed in terms of the non-symmetrical Cauchy stress tensor ς
and of the couple stress tensor µ as

t = ςTn + ∇µnn × n / 2, q = (I − n ⊗ n) µTn. (2)

In the following the Cauchy stress ς will be decomposed into the symmetric part σ and
the skew-symmetric part τ.
For a plane problem, the non-vanishing in-plane stress and couple stress components in
polar coordinates are σrr, σθθ, σθr, τθr, µr3 and µθ3, with σrθ = σθr and τrθ = −τθr.
Accordingly, the in-plane strain and deformation curvature components are εrr, εθθ, εθr,
χ3r, and χ3θ, with εrθ = εθr. Moreover, the condition ε33 = 0 must be imposed for plane
strain problems and the boundary conditions (2) result in

σθr + τθr = σθθ = 0, µθ3 = 0. (3)

With respect to a polar coordinate system, the equilibrium equations are

r σrr,r + σθr,θ + σrr − σθθ + τθr,θ = 0,

r (σθr,r − τ θr,r) + σθθ,θ + 2 σθr = 0, (4)

r (µr3,r  − 2 τ θr) + µθ3,θ + µr3 = 0,

and kinematic compatibility requires that

&ε rr = vr,r, r &ε θθ =  vr + vθ,θ, 2 r &ε rθ =  vr,θ − vθ + r vθ,r, (5)



r &χ 3r = r &ε rθ,r + 2 &ε rθ − &ε rr,θ, r &χ 3θ = r &ε θθ,r + &ε θθ − &ε rr − &ε rθ,θ, (6)

&χ 3r,θ − (r &χ 3θ),r = 0. (7)

Within the context of small deformations incremental theory, the total strain rate ε&  is
the sum of elastic ε& e and plastic ε& p parts. Similarly, the total deformation curvature
rate &χ  is the sum of elastic &χ e and plastic &χp contributions. Both elastic parts are related
to stress and couple stress rates through the incremental relations

ε& e = 
E
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where E denotes the elastic Young modulus, ν the Poisson ratio and le is the elastic
length scale introduced in [5] in order to partition the deformation curvature rate tensor
into its elastic part &χ e and plastic part &χp, being le < l. It is worth noting that, within the
couple stress theory µ, χ, χe, and χp are purely deviatoric tensors.
The fundamental relationships of the constitutive model are briefly summarized below.
• Yield condition

f (Σ, Y) = Σ − Y = 0, (9)

where Σ is the overall effective stress, defined as

Σ2 = 3/2 (σdev
 • σdev + l−2 µ • µ), (10)

and Y denotes the uniaxial flow stress defining isotropic hardening behaviour. 
• Flow rule
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where Λ is the plastic multiplier.
• Linear isotropic hardening rule

Y&  = Λ H, (12)

where H = α E / (1 − α) is the hardening modulus, and α = Et / E (0 < α < 1) is
the ratio between the tangent modulus and the elastic Young modulus for a
bilinear stress-strain curve obtained by a uniaxial tension text.

• Prager consistency condition

&f  = 0, or equivalently &Σ = Y& ,

which gives the non-negative plastic multiplier Λ as
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where 〈 〉 denotes the MacAuley brackets and

&Σ = 
3

2 Σ
 (σdev

 • &σ + l−2 µ • &µ). (14)

From (8) the elastic-plastic incremental constitutive equations for the stress and couple
stress tensors, σ and µ, turn out to be
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where ξ = le/l < 1 is a non-dimensional parameter. Equations (15)-(16) hold when the
stresses and couple stresses satisfy the yield condition (9). Otherwise, the incremental
constitutive relationship reduces to the couple stress isotropic elasticity [6, 7], recovered
when Λ = 0. Note that strain gradient effects occur also for a purely elastic response.
However, their magnitude may be made arbitrarily small by choosing a sufficiently
small ξ ratio. Finally, it can be observed that the resulting constitutive equations (15)-
(16) represent a generalization of the widely used J2-flow theory of plasticity, and
reduce to that model when the strain gradients are vanishing small.  

ASYMPTOTIC CRACK-TIP FIELDS

Equations (4)-(7) together with the constitutive incremental equations (12), (15) and
(16) form a system of first order PDEs which governs the problem of the crack propaga-
tion. The solution is sought in separable variable form, which corresponds to the most
singular term in the asymptotic expansion of near crack-tip fields. A qualitative analysis
shows that the velocity, stress and couple stress crack-tip fields admit the following
asymptotic representations

v(r, θ) = −
s

V
s









R

r
w(θ), σ(r, θ) = E 

s









R

r
S(θ), τθr(r, θ) = E 

s









R

r
 Tθr(θ),

µ(r, θ) = E l 













t

B

r
m(θ) +…+ 

l

r






θ








)(
R

r
n

s

 ⊗ e3, (17)

where R and B denote two characteristic lengths which define the amplitude of the
leading order term of the stress and couple stress fields. In particular, B is assumed to
coincide with R when t = s, so that, in this case, both the leading order terms of the
stress and couple stress fields are defined within a single amplitude factor.
According to representations (17) of the stress and couple stress crack-tip fields the
overall effective stress and flow stress fields assume the following form
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where p = min{s, t}, P = B if t < s or P = R if t ≥ s and the function Γ follows from (10)
and (17)2,4 as
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By using the steady-state derivative (1), the rates of the fields σ, µ and Y in (17)2,4 and
(18) can be written as
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The constitutive relations (15) and (16) imply that the strain and deformation curvature
rates must have the same radial dependence assumed for the stress and couple stress
rates in (20), respectively. Therefore, the following asymptotic representations are
assumed for the strain and deformation curvature rates
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so that for t > s − 1 the right hand sides of the compatibility equations (6) are more
singular than the left hand sides. It follows that the dominant strain rate field turns out
to be irrotational, as occurs for the problem of a stationary crack [8, 9], although the
leading order term of the deformation curvature is not vanishing.
By contrast with the approach of Xia and Hutchinson [8] and Huang et al. [9] for the
problem of a stationary crack, in the present analysis the leading order term of the
deformation curvature rate is not vanishing, but couples with higher order terms of the
strain rate and velocity fields, which behave as rt and rt+1 as r → 0, respectively.
It is worth noting that the solution of the homogeneous asymptotic problem can be
determined up to the amplitude factors B and R, which depend on far-field loading and
specimen geometry and can be estimated by matching with the far-field conditions.
Nevertheless, the asymptotic analysis can capture the strength of the singularity of the
stress and couple stress fields, namely s and t, and the variation of the angular functions
normalized by the condition Sθθ(0) = 1 under mode I, or Sθr(0) = 1 under mode II.
Moreover, for t ≠ s the additional normalization condition mθ(0) = 1 under mode I, or
mr(0) = 1 under mode II, must be considered for the leading order couple stress fields.
The formulation of the solving eigenvalue problem is detailed in [10]. Its solution holds
for r < l, even if the asymptotic analysis has been extended to the second order terms of
the couple stress and deformation curvature fields. Indeed, for r > l a switch between
the leading and higher order terms may occur in the asymptotic expansions (17)4 and
(21)2, which implies a transition towards a stress dominated solution at a sufficiently
large distance from the crack-tip. In any case, strain gradient effects are expected to be
significant within a zone of radius larger than l [8].
As a further outcome, the angles which define the boundary between plastic and elastic
sectors (θ1 and θ2) are calculated. In particular, considering only the interval 0 < θ < π,



if elastic unloading occurs, the zone with θ < θ1 is plastic, that with θ1 < θ < θ2 is an
elastic sector where f (Σ, Y) < 0 (cf. eq. 8), and that with θ2 < θ < π is a reloading plastic
sector adjacent to the crack flank.
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Figure 1: stress and couple stress singularities (a), elastic unloading and plastic reloading
angles (b) as functions of the ratio ξ, under mode I  for ν = 0.3 and α = 0.01.

MODE I AND MODE II PLANE STRAIN RESULTS

Values of the exponents s and t, elastic unloading and reloading angles θ1 and θ2 under
mode I plane strain conditions are reported for various values of the characteristic
lengths ratio ξ = le/l in Fig. 1, for α = 0.01 and ν = 0.3. The stress singularity predicted
by the classical J2-flow theory for this value of α results as being extremely weak,
namely s = −0.0805, and the corresponding elastic unloading and plastic reloading
angles are θ1 = 135.36 and θ2 = 145.61, as may be found by following the approaches of
Ponte Castañeda [4], or Bigoni and Radi [11] for vanishing pressure sensitivity. In Fig.
1a three distinct regions may be observed for increasing values of ξ between 0 and 0.5,
where t < s, t = s and t > s, respectively. Interestingly, as ξ tends to zero, namely for
vanishing elastic characteristic length, the singularity of the couple stress fields t tends
to the elastic singularity −0.5, whereas the singularity of the stress fields s approaches
−0.33. Further investigations show that these limit values for t and s are found to be
almost independent of the hardening coefficient α. In any case, for ξ << 1 the strength
of the stress singularity increases with respect to the classical J2-flow theory. For ξ <
0.13 the couple stresses dominate the asymptotic solution and thus, the effective stress
has the same singularity of the couple stress field within this range (eq. 19). However,
as ξ approaches the value 0.13 from below, the exponent of the couple stress singularity
t tends to increase and to coincide with the exponent of the stress singularity s. For 0.13
≤ ξ ≤ 0.31 the negative exponents t and s are coincident and, thus, both stress and
couple stress fields display the same singularity. As ξ increases, the strength of



singularity decreases and, for ξ = 0.31, the magnitude of the leading order term of the
couple stress field m tends to vanish. For ξ > 0.31, the solution is stress-dominated and
the stress singularity assumes the value s = –0.071 independently of ξ. This kind of
solution for the leading order term of the stress field may be actually found for every
value of the ratio ξ. For the stress-dominated solution, in fact, the ratio ξ has no
influence on the stress field, but affects only the couple stress field, which appears to be
not singular for ξ < 0.31. However, the stress dominated solution is not expected to
recover the results obtained in [4] for the classical J2-flow theory, as the leading order
term of the velocity field turns out to be irrotational and a skew-symmetric stress
component occurs for the present analysis.
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Figure 2: angular variations of the asymptotic fields of stress (a), couple stress (b), velocity (c)

and deformation curvature rate (d) under mode I  for ν = 0.3 and α = 0.01.
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Figure 3: stress and couple stress singularities as functions of the ratio ξ, under mode II
for ν = 0.3 and α = 0.01.

The variation of the elastic unloading and reloading angles, θ1 and θ2, with ξ is then
reported in Fig. 1b, for α = 0.01. As ξ tends to vanish, an elastic unloading sector starts
at θ1 ≈ π/2 and extends up to the crack flanks. For ξ ≥ 0.13 a plastic reloading sector
appears and the elastic unloading sector rapidly reduces in size and tends to vanish for
ξ ≅ 0.137. For ξ > 0.137 the crack-tip zone is fully plastic, as already observed by Wei
and Hutchinson [12]  in their finite element investigations performed for ξ = 0.5.
As noted in [5] the considered constitutive model may give reasonable predictions for
small values of ξ, namely ξ << 1, in view of the fact that the magnitude of the couple
stress in the elastic sector results as being proportional to ξ. As the strain gradient
effects are associated with the occurrence of dislocations, they scarcely influence the
elastic behaviour. Therefore, the results obtained for small values of ξ are expected to
be more realistic.
The angular distributions of the asymptotic crack-tip fields, normalized by conditions
Sθθ(0) = 1 and mθ(0) = 1, are plotted in Fig. 2, for ξ = 0.1 and α = 0.01. In particular,
Fig. 2a shows that the tensile stress field ahead of the crack-tip is characterized by large
stress triaxiality and the symmetric part of the shear stress, namely Srθ, is almost
vanishing within the plastic loading sector. Moreover, Sθr and Tθr tend to opposite
values on the crack faces, as required by the boundary condition (3)1. Fig. 2b shows the
angular variation of the couple stress fields m and n and that of the current flow stress γ.
Note that the current flow stress, which is given by the single contribution from the
couple stress field as t < s, seems to be almost constant within the plastic loading sector
and tends to diverge at the crack flanks as is usual for crack propagation problems in
elastic-plastic materials displaying linear isotropic hardening. 
The angular variations of the velocities and deformation curvature rates are shown in
Figs. 2c, d. It may be observed that the velocity component wθ at θ = π is negative, thus
implying crack-tip opening. Moreover, the deformation curvature rates are also present
in the elastic unloading sector, although xθ assumes larger values within the plastic
loading sector ahead of the crack-tip.



The variations of s and t with the characteristic lengths ratio ξ under mode II loading
conditions are reported in Fig. 3, for α = 0.01. From these findings it appears that the
exponent t of the couple stress field vanishes as ξ tends to zero and tends to increase for
ξ > 0. Therefore, mode II crack propagation does not result in singular couple stresses,
as already observed for a stationary crack in strain gradient [9]. It follows that the
asymptotic fields are stress-dominated and, thus, the leading order terms of the stress
and velocity fields do not depend on the value of ξ. In particular, the stress singularity
s = −0.0659 has been detected for every value of ξ, together with a fully plastic crack-
tip zone with no elastic unloading sector. 
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Figure 4: angular variations of the asymptotic fields of stress (a), couple stress (b), velocity (c)
and deformation curvature rate (d) under mode II for ν = 0.3 and α = 0.01.

The angular variations of stress, couple stress, velocity and deformation curvature rate
functions for mode II crack propagation, normalized by conditions Sθr(0) = 1 and mr(0)



= 1, are plotted in Fig. 4 for ξ = 0.1 and α = 0.01. From Fig. 4a it can be observed that
the skew-symmetric shear stress Tθr largely exceeds the symmetric component Sθr and
the current flow stress γ ahead of the crack-tip. Therein, the shear traction, which is
given by the sum of Sθr(0) and Tθr(0), is almost equal to 2.6 times the magnitude of the
current flow stress γ(0) and, thus, appears to be larger than in classical plasticity due to
the contribution from the anti-symmetric shear stress. As the mode II solution is stress
dominated the current flow stress is given by the single contribution from the symmetric
stress field. The elastic characteristic length influences only the couple stress and
deformation curvature rate functions, even if their qualitative trend undergoes little
change with ξ. Note also that two different scales have been adopted in Fig. 4d for the
leading order and the higher order terms, namely x and y.
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