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Abstract

Giannakopoulos et al (1998, 2000) have recently proposed
analogies between the stress …eld induced in fretting contact situ-
ations, with those of a crack. Here, improvements of the fretting
“crack analogue” are given considering full-sliding and partial slip
conditions, and analyse the correct e¤ect of bulk stress.

1 Introduction
Fretting Fatigue (FF) has been found almost 100 years ago (Eden et
al., 1911, Tomlinson, 1927), but has mostly been seen, until recently,
as a “separate” area of fatigue, where the mechanical damage over the
surface was considered to have a dominant role in decreasing the fatigue
performance of the material. Therefore, parameters as microslip ampli-
tude and surface energy dissipated by friction were considered (Nishioka
and Hirakawa, 1969, Nowell and Hills, 1990), but their determination
remained empirical and unrelated to more classical fatigue literature.
More recently, the role of the contact stress …eld in provoquing fatigue
from a stress raiser feature, has been recognized more in details, and in-
deed a crack analogue model for the case where the contact is complete
(singular pressure and frictional shear tractions) and a notch analogue
for cases where we expect a smooth transition to zero pressure at the con-
tact area edges, and correspondingly a …nite stress concentration, have
been proposed (Giannakopoulos et al., 1998, 2000). It was recognized
that the stress …eld induced by the contact is very similar to the square-
root singular stress …eld around an external crack — the singular stress
…eld can be quanti…ed by a stress intensity factor, and the bulk stress in
the contacting materials becomes a T¡stress in the fracture mechanics
terminology. Cracks developed at the contact site are kinked cracks, and
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the condition of initiation is rather a condition for non-propagation over
stress intensity factors amplitudes ¢K <¢Kth.

However, in the original crack analogue perfect stick is assumed,
for simplicity, and no detailed analysis was produced on the possible
conditions for microslip to arise, depending on applied loads (and in
particular on the e¤ect of bulk loads into one of the contacting bodies).
In the present paper, this assumption is removed. The e¤ects on the
predicted stress intensity factors, on the complete stress …eld, and on
the consequences for fretting fatigue life methodology, are all analyzed.

2 Crack Analogue (CA)
Many fretting conditions may be idealized as a …rst approximation as
square-ended feet pressing over a fatigue specimen. Consider therefore
the geometry in Fig.1.
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Figure 1: The CA model a ‡at punch under normal load

For a constant mode I load and a varying mode II load (constant normal
load P and varying Q), we have (for a 2D geometry)

KI = ¡ Pp
¼a

= ¡ 2
¼
p
p
¼a; ¢KII = § Qp

¼a
= §2
¼
q
p
¼a (1)

where p = P=2a and q = Q=2a.
The contact problem in Fig. 1 is governed by the equation (Hills et

al., 1993)

g0(x)
A

= ¡1
¼

Z a

¡a

q (t)
x¡ tdt ¡

¾b
2°

(2)

where Coulomb’s friction law implies conditions on the relative tangen-
tial displacements function g0(x), A is the “composite compliance” of
the bodies

A =
2(1 ¡ º21)
E1

+
2(1¡ º22)
E2

= 2
µ

1
E¤1

+
1
E¤2

¶
; (3)
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We recollect here that we have assumed ¯ = 0, and ° =
³
E¤2
E¤1

+ 1
´
;

i.e. ° = 2 for identical materials, but ° = 1 for the only case where the
treatment is strictly rigorous, of rigid puch and incompressible material.
Once shear traction are determined, the resulting surface stress in the
half-plane can be obtained as

¾xx(x; 0) = p(x) +
2
¼

Z a

¡a

q (t)
x¡ tdt+ ¾b (4)

which we will be using in the various cases – notice that here ° has no
e¤ect, whereas it has e¤ect on the determination of the stick region, as
in eqt. (2).

2.1 Tangential load only
The shear traction are given by the solution of the integral equation
above (2), where g0 (x) depends on relative displacements in tangential
direction, in the following manner: when a tangential load Q is applied
sequentially to the normal load only, obviously g0 (x) = 0 in the stick
region. The equation is the same found for the normal load only, so the
solution is as correctly derived in the original CA model. This solution
in fact satis…es Coulomb’s law for friction, and in particular jq(x)j ·
f jp(x)j in the entire contact area, as long as jQj · f jP j. At this limit,
there is suddenly full sliding in the entire contact area.

Near the contact edge, the asymptotic form for ¾xx is, for example
for the right edge (and symmetrically for the left edge)

¾xx(x ! a+) = 2Q
¼
p
x2 ¡ a2 = 2

KIIp
2¼r

¾xx(x! a¡) = ¡ P
¼
p
x2 ¡ a2

= KIp
2¼r

(5)

as predicted by the CA model, where KI and KII are de…ned in (1) :

2.2 Bulk stress only
In the case of normal force P and bulk load ¾b the solving equation in
the hypothesis of full stick gives

q(x) =
¾b=2°

¼
p
a2 ¡ x2

Z a

¡a

p
a2 ¡ t2
x ¡ t dt =

x=ap
1¡ (x=a)2

¾b
2°

(6)

which holds if jq(x)j · fp(x) or

jxj =ap
1 ¡ (x=a)2

¾b
2°

· 2
¼

fpp
1¡ (x=a)2

(7)
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Hence, there is complete stick only for small bulk load when

¾b ·
4
¼
°fp (8)

For larger bulk loads, if ¾b ¸ 4
¼°fp, two slip zone take place next to

the contact edge in symmetrical position, and the solution of the inte-
gral equation is obtained using a procedure similar to Spence’s solution
(Spence, 1971). We …nd

q (x) =
½
q¤ (x) ; jxj · b
f p(x)sign(x) ; b · jxj · a (9)

where b is the semidimension of the stick area, given by the consistency
condition

K0(b=a) = ¼
2¾b

8°fp
(10)

whereK 0(b=a) =K(1¡(b=a)2), and K(¤) is the complete elliptic integral
of the second kind. In the …gure 3 the stick area semiwidth is plotted
as a function of dimensionless bulk load ¾b= 4¼°fp and it can be noticed
that for ¾b= 4¼°fp · 1 the entire contact area is in full stick.
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Figure 3: stick area semiwidth as a fuction of bulk load

In …gure 4 the tangential tractions are plotted for di¤erent values of
bulk load ¾b= 4¼°fp: The KII factors in such case also de…ne the asymp-
totic stresses in the regions near the edges, and are found as

KII = §
p
¼a¾b
2°

; ¾b · 4
¼
°fp

KII = §fKI; ¾b ¸ 4
¼
°fp (11)
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Figure 4: tangential tractions for several values of bulk stress

2.3 Tangential & bulk load
In the case of tangential and bulk load applied simultaneously, as it is
typical of fretting fatigue, the solution of integral equation(2) is

q(x) =
x=ap

1¡ (x=a)2
¾b
2°

+
Q

¼a
p

1 ¡ (x=a)2
(12)

in the assumption complete stick situation, when jq(x)j · fp(x) in the
entire contact region.

Accordingly, we can write that (12) is the correct solution if the
following condition is satis…ed

¾b
2°

+ Q
¼a

· f P
¼a

) ¾b · 4
¼
°fp

µ
1¡ Q
fP

¶
(13)

If the condition is not satis…ed we can expect the slipping region to be
next to the left edge, in opposite direction with respect to the tangen-
tial load Q. We can therefore write the tangential traction as the sum
of a component of complete sliding fp(x) and a corrective contribute
q¤(x), di¤erent from zero only in the stick area. If we indicate b as the
coordinate of left edge of the stick area, we …nd

q (x) =

(
f jp (x)j ¡ ¾b

2°

q
b¡x
a+x ;¡a · x · b

f jp (x)j ; b · jxj · a
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where, from the equilibrium condition,

b =
4°(fP ¡Q)
¼¾b

¡ a (14)

If the bulk load is large enough

fP
¼a

p
1¡ (x=a)2

¡ ¾b
2°

r
b ¡x
a+ x

· ¡ fP
¼a

p
1 ¡ (x=a)2

x! ¡a (15)

and so

¾b ¸ 4
¼
°fp

1
1¡Q=fP (16)

there is also slip next to the right corner.
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Figure 7: stick zone boundaries according to the load conditions

Hence, for bulk load larger than the above limit the only approach at
the moment is to develop a numerical method to …nd the tractions, but
having a knowledge of the asymptotic stresses (from the sliding condition
at both ends) there is no need for this. Finally, we have three possibly
situations according to the bulk load, as we can see in the …gure 7:

Accordingly, the KII factors in general case of bulk and tangential
load applied for ¾b · 4

¼°fp (1 ¡Q=fP ) becomes

KII =
p
¼a¾b
2°

+
Qp
¼a

x = a

KII = ¡
p
¼a¾b
2°

+ Qp
¼a

x = ¡a (17)
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whereas for 4
¼°fp (1¡Q=fP ) · ¾b · 4

¼°fp= (1¡Q=fP )

KII = fKI; x = a

KII = fKI ¡
p
2¼¾b
2°

s
4°(fP ¡Q)
¼¾b

; x = ¡a (18)

and …nally for ¾b ¸ 4
¼°fp= (1 ¡Q=fP )

KII = fKI; x = a
KII = ¡fKI ; x = ¡a (19)

Figure 8 and …gure 9 give the variation of the mode II stress intensity
factor as a function of bulk and tangential loads, at the trailing and
leading edge, respectively: the latter is given only for completeness (as
the trailing edge value is always greater), and notice that it varies sign,
for large enough bulk loads.
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Figure 8: SIF ratio in the trailing edge — Figure 9: SIF ratio in the leading edge

The new factors are compared with the previous CA model KII , where
only the contribute due to the tangential load was taken into account

KII = (KII)Q =
Qp
¼a

The di¤erence is reported in …gure 10. Clearly, the error is larger for
large bulk loads and low Q=fP , i.e. away from the friction limit, when
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the e¤ect of bulk load dominates over the tangential load.
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Figure 10: Correction (in %) in the mode II SIF with respect to
the original CA model

2.4 Initiation angle
According to the CA model, to determine the inclination direction of the
…rst propagation phase, we consider that KI is …xed while KII depends
on the load case and is an oscillating term. The CA model suggest to
impose the maximum SIF value to …nd the angle with the x axis, Á in
…gure 1b, (® is the complementary Á to ¼). In the partial slip condition,
clearly the ratioKII=KI is constant and is equal to the friction coe¢cient
f, whereas it is variable in the situation of complete stick. In the latter
case we have to impose k2 to be zero. In either condition, we compute
the predicted initiation angle as

sin Á2 + sin 3Á
2

cos Á2 + 3 cos 3Á
2

= ¡KII
KI

(20)

In the case of complete stick, and ¾b · 4
¼°fp (1¡Q=fP )

sin Á2 + sin 3Á
2

cos Á2 +3 cos 3Á
2

=
¼ (¾b)max

4°p
+
Qmax

P
(21)

whereas for larger bulk loads, we have to impose that the second term
is equal to the limit value f . In the …gure 11 the initiation direction is
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shown as a ratio with ®lim; the limit value depending on friction coe¢-
cient f which is in turn plotted in the …gure 12.
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Figure 11: initiation direction of crack in the trailing edge
Figure 12: limit initiation direction
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