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INTEGRITY ASSESSMENT OF DEFECTIVE
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SUMMARY: This paper is concerned with the integrity assessment of defective
pressurized pipelines and pressure vessels by means of diverse methods comparatively,
for two kinds of failure processes: (I) plastic collapse under internal pressure
monotonically increasing in time; (II) incremental collapse (or more generally lack of
shakedown, “inadaptation”) under fluctuating internal pressure. The defects considered
are part-through slots of various geometrical configurations. The analysis methods
employed and comparatively discussed are as follows: for situation (I), empirical
formulae of current industrial use, rigid-plastic limit analysis, elastic-plastic time-stepping
computations by a commercial nonlinear code; for situation (II), a direct method based
on classical shakedown theory and evolutive computations like for (I). The main
assumptions are Mises perfect elastoplasticity and small deformations. As the main
conclusion, the kinematic direct methods of limit and shakedown analysis in a finite
element setting turn out to represent a cost-effective and reliable tool for integrity
assessment in the present context.
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INTRODUCTION

Metal structures designed to contain fluids under pressure are recurrent in various
technological areas, such as the oil and gas industry, power plant engineering and
chemical factories. The integrity assessment of defective structures in this broad category
represent a practically important task of structural analysis and designers. In the above
technological areas, defects which may jeopardize the integrity (i.e. reduce carrying
capacity) of pipelines, pressure vessels and similar containment structures are mostly
represented by local reductions of thickness in form of part-through slots (cavities or
notches) or cracks, sometimes associated with indentation of metal wall.
In this paper focus is on part-through slots which can be generated by localized corrosion
(“pitting”), fabrication defects or abrading and gauging mechanical accidents (such as
impacts of external objects). The events of integrity loss considered in this study are
ultimate limit state, envisaged in classical plasticity theory (Lubliner, 1992), namely: (I)
plastic collapse under internal pressure monotonically increasing in time; (II) the
persistent development of plastic deformations (i.e. cumulative dissipated energy
unbounded in time) under fluctuating (variable repeated) internal pressure.
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The main objective pursued here is of critical and engineering-oriented nature, rather
then creative and mechanics-oriented (although novel contributions are believed to be
included in the proposed procedure of shakedown analysis). In fact this study aims at
comparative assessment of the computational merit from an industrial standpoint (in
terms of cost-effectiveness, reliability and amount of results with practical interest) of
diverse methods of analysis.
The approaches to be employed and discussed for limit analysis (I) are as follows:
(a)  empirical or semiempirical formulae available in literature and currently adopted in

industrial environments;
(b)  elastic-plastic time-stepping finite element analysis by a commercial computer code

(ABAQUS) (Hibbitt et alii, 1995);
(c)  rigid-plastic limit analysis in its computer implementation due to Liu et alii (1995a,b)

based on the kinematic (upper bound, “unsafe”) limit theorem (Lubliner, 1992) and on
finite element modelling of the displacement field (with special provisions to avoid
locking manifestations);

As for the evaluation of the safety margin of defective structures under variable-repeated
loading, the following quite distinct methodologies have been comparatively applied:
(d)  direct method of simplified shakedown analysis based on Koiter’s kinematic theorem

of classical plasticity (Lubliner, 1992), mathematical programming (Cohn and Maier,
1979) and 3D-FE discretization like in approach (c), which can be regarded as a
special case of the present one (for vanishing amplitude of pressure fluctuations);

(e)  evolutive analysis by a professional finite element code, like in (b).
Two hypotheses are crucial in all the above approaches: (i) elastic-perfectly plastic
material model with von Mises yield criterion and unlimited ductility; (ii) small
deformation i.e. linear kinematics. The relaxation of these restrictions will not be dealt
with here but are pursued in the sequel of the present study.
Limit analysis and shakedown theory have been recently generalized much beyond
classical perfect plasticity (e.g. to nonlinear-plasticity with saturation and
nonassociativity, see Pycko and Maier, 1995, Stein et alii, 1992) but not to softening.
Similarly extensions of those theories to geometric effects (Maier et alii, 1993) seem
unlikely to represent practical propositions in the situation considered herein.
The structures considered here for comparative computations by the above listed
methods are defective pipelines, i.e. thick cylinders with internal pressure and an external
slot. The geometry of the slot is varied like in Liu et alii (1995a,b), in order to
corroborate comparisons among approaches by means of numerical tests concerning
real-life situations, and covering a meaningful set of cases.

SEMIEMPIRICAL APPROACHES FOR LIMIT PRESSURE

Some of the semiempirical formulae widely used in industrial environments to compute
the limit pressure of pipes and vessels with part-through defects can be summarized in:

P PL LM= Θ (1)

where PLM is Mariotte’s limit pressure and Θ represents a factor which depends on
geometrical parameters, specified in Figure 1, through closed form expressions proposed
by various authors. Some of these expressions for Θ, listed in Miller’s review (Miller,
1988), read as follows:
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where: a=t-b, η = b t  and ρ = c Rt

Figure 1: geometric parameters.

KINEMATIC LIMIT ANALYSIS

Consider a 3-D, perfectly-plastic body V with the boundary S. The reference surface
tractions f i  (i=1,2,3) are prescribed on a part Sf  of the surface, while the remaining part
Su is held in a fixed position. Let the limit state of plastic collapse under proportionally
increasing tractions (body forces are ignored) be reached at the load level or “safety
factor” s.
When the von Mises yield criterion is adopted, the kinematic (upper bound, “unsafe”)
limit theorem of classical plasticity (see e.g. Lubliner, 1992) leads to the following
mathematical programming formulation (Cohn and Maier, 1979):
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where σs is the yield stress of the material, &ui  and &pij  (i,j=1,2,3) denote the velocity and

plastic strain rate, respectively.

In the following the factor 2
3 σ s  is omitted to simplify the notation.
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Discretizing eqn. (5) by means of displacement isoparametric finite elements, we obtain
as an approximation:

s J U G U

F U

H B U h I

U
h h

T

h
h I

T

T
h

≅

=

= ∀ ∈













∈
∑min & &

&

&

&
ρ  ,  subject to:

    

           

1

0

(6)

where: &U  is the vector of velocities in the unconstrained nodes and F the relevant

equivalent nodal load vector corresponding to the prescribed tractions; ρ denotes Gauss
integration weight, |J| the Jacobian determinant, I the set of all integration points run by
index h. As for the matrices in eqn. (6), G B BT=  and B is the strain matrix relating the
strain field to nodal displacements (computed at Gauss points h), H is a constant vector.
In eqn. (6) all constraints are equalities but the nonlinear objective function is not
continuously differentiable. In such finite elements formulation, based on displacement
modelling, the incompressibility condition (6c) is known to generate “locking”
phenomena and unsafe safety factor s. In order to avoid this spurious effect a penalty
function approach is here adopted like in Liu et alii, (1995a,b); an alternative provision
may be represented by reduced integration (see Nagtegaal et alii, 1974).
Enforcing the incompressibility constraint (6c) by a penalty procedure (αh being penalty
factors) and the normalization constraint (6b) by the Lagrange  method (λ being the
Lagrange multiplier), we obtain from eqn. (6):
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where G B CBV
T=  and C is a constant matrix. The optimality conditions of the problem

(7) leads to a set of nonlinear equations, that can be solved through the following
iterative scheme according to the algorithm of Liu et alii, (1995a,b):
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where k is the iteration counter.
At each iteration the rigid and plastic zones are distinguished, and the objective function
and constraint conditions are modified. Namely, before proceeding with the (k+1)th

iteration, the quantity & &U G U
T

h  is computed at every integration point and the set I of

Gauss points is subdivided into the rigid zone subset Rk+1 and the plastic zone subset
Pk+1, i.e.:

{ } { }R h I U G U P h I U G Uk k
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Condition of zero dissipation in the Gauss points is imposed on the rigid zone:
& &U G U h R

T

h k= ∈ +0 1       (10)

Enforcing these constraints by a penalty function method (βh being new penalty factors),
the optimality conditions (8) become the system of linear equations to solve:
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The initialization for k=0 is performed by setting & &U G Uk

T

h k = 1. The penalization factors

α and β are suitably updated at each iteration (Liu et alii, 1995b).
The k+1 solution vector &U k +1  yields:
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Numerical experience shows that the above iterative process leads to the limit load

multiplier s and to a collapse mechanism &U s
 through a convergent sequence with

monotonically decreasing sk.

KINEMATIC SHAKEDOWN ANALYSIS

Suppose that the loads acting upon an elastic-perfectly plastic body V vary quasistatically
within a given convex polyhedron G with M vertices g

n
 (n=1,...,M).

The main purpose is to evaluate the safety factor s against non-shakedown or
inadaptation (i.e. total plastic dissipation unbounded in time because either incremental
collapse or alternating plasticity). If M=1, shakedown analysis reduces to limit analysis.
The kinematic approach to shakedown analysis is centered on the notion of
“kinematically admissible cycles” of plastic strain rate (Lubliner, 1992, Cohn and Maier,
1979). With reference to the above load domain, plastic flow is activated at the vertices
of the domain. Using vector notation to avoid numerous indices, denoting by &p t

n n∆  the

plastic strain subincrement at vertex n and setting ∆tn = 1 (n=1,..,M), the shakedown
load factor can be determined by solving the following constrained minimization
problem:
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where: σn
e  denotes the purely elastic response to load g

n
; D p

n
( & )  the plastic energy

dissipation due to plastic strain &p
n
; &pVn  the volumetric plastic strain at the nth loading

vertex; ∆ p  is the compatible plastic strain increment and ∆u  the displacement field

increment over a cycle.
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With Mises yield function the plastic energy dissipation in eqn. (13) becomes

D p p Ap
n n

T

n
( & ) & &=  (n=1,...,M), where A is a symmetric positive-definite matrix.

After finite element modelling and numerical integration, eqns. (13) lead to the following
mathematical programming problem:
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where: ρ denotes Gauss integration weights, |J| the Jacobian determinant, I the set of all
integration points run by index h; B is the strain matrix (computed at Gauss points h) and
U  is the nodal displacement vector.
The objective function in eqn. (14), like in (6), is convex but not differentiable
(“nonsmooth”) in the non-plastic zones (called “rigid”) where &p

nh
 vanishes. For the

solution of the problem (14) a strategy and an iterative algorithm, similar to the ones
employed earlier for limit analysis, are used herein with suitable adjustments. The
iteration scheme can be concisely specified as follows:
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where &p
nh

k  is the previous approximation to &p
nh

, Rn
k +1  and Pn

k +1  are the rigid and plastic

subset, respectively, of the Gauss point set I (n=1,...,M). The imposition of rigid
constrains (16) is intended to make the objective function in eqn. (15a) differentiable.
Like for limit analysis, problem (15) is solved by enforcing the constraints through
Lagrange multiplier and penalty function methods, applying the optimality conditions to
the augmented objective function and solving a linear equations system in the unknowns
U k +1  and &p

nh

k +1  (n=1,...,M).
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Numerical experience shows that the above iterative process leads to the shakedown

load factor s and to an inadaptation mechanism &U s
 through a convergent sequence with

monotonically decreasing objective function.

APPLICATIONS

The effects of various shapes and sizes of slots on the pressure carrying capacity of
thick-wall pipes are evaluated by the direct methods outlined above and, where
applicable, by the semiempirical formulae described earlier. The defects considered
include part-through spherical, ellipsoidal and rectangular slots like in Liu et alii
(1995a,b). The numerical results are compared with those of the elastic-plastic time-
stepping 3-D finite element analysis by the commercial code ABAQUS (Hibbitt et alii,
1995).
The radius ratio (i.e. the external to internal radius) of the pipe is ψ=1.20. The cylinder
thickness t=20mm and the yield stress σs of material is 200Mpa. The Young’s modulus is
E=2.1x105Mpa and the Poisson’s ratio is η=0.3. The cylindrical shell is discretized by 3-
D eight-node isoparametric finite element. The finite element meshes adopted are shown
in Figure 2.

(a) circumferential ellipsoidal slot (b) spherical slot

(c) axial ellipsoidal slot (d) rectangular slot

Figure 2: meshes of considered pipes.

Table 1 gathers results of limit analyses performed by assuming that the pressure
monotonically increases in time up to the failure, these results are compared in the table
to those provided by evolutive analysis and semiempirical formulae.
In Table 1 excellent agreement can be noticed between limit pressures at plastic collapse
provided by the two drastically different numerical methods resting on solid theoretical
basis. The semiempirical formulae provide rather erratic, usually very conservative
estimates of the carrying capacity of the defective pipes, at least in the configuration
range considered in the parametric studies performed so far.
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Table 1: the comparison of limit loads by different methods.

ABAQUS
Kinematic
Approach

Ewing Chell Battelle

pipe
without slot 42.1 42.2

circum. Ellipsoidal
slot (Figure 2a) 41.7 41.3 38.56 39.23 39.02

spherical slot
(Figure 2b) 40.7 40.5 36.10 38.91 38.13

axial ellipsoidal slot
(Figure 2c) 40.1 39.0 27.67 29.39 28.33

rectangular slot
(Figure 2d) 34.4 34.0 28.06 30.12 29.02

The plastic collapse mechanism obtained by the direct (“simplified”) method is compared
with that by ABAQUS in Figure 3. The mechanism obtained by ABAQUS is relative to
the last increment of pressure before the structure reaches the limit state. Good
agreement can be observed between the collapse mechanisms provided by the two kinds
of approaches.

(a) rectangular slot (ABAQUS) (b) rectangular slot (Kinematic approach)

Figure 3: the comparison of collapse mechanism.

Secondly, shakedown (adaptation) analyses are presented and discussed following a
pattern similar to the preceding one, but assuming pressure fluctuating in time from zero
to a maximum. The comparison of computed results is given in Table 2 and Figure 4.

Table 2: the comparison of shakedown limit pressure by two kinds of approaches.

ABAQUS
Kinematic
Approach

pipe
without slot

42.1 42.2

circum. Ellipsoidal
slot (Figure 2a)

41.2 41.1

spherical slot
(Figure 2b)

40.1 40.4

axial ellipsoidal slot
(Figure 2c)

36.0 35.7

rectangular slot
(Figure 2d)

32.7 31.9
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To obtain the limit pressure of inadaptation by ABAQUS, it was necessary to monitor
the total dissipated plastic energy in each loading cycle. A pressure amplitude marks the
limit of inadaptation if it separates a set of amplitudes for which, after some initial cycles,
the structure does not dissipate plastic energy, from a set for which the total plastic
energy does not cease to increase as the loading history proceeds.
Table 2 and Figure 4 show that the shakedown pressure limits and the mechanisms of
incremental collapse are in good agreement between the two kinds of approaches. The
mechanisms of incremental collapse obtained by ABAQUS are built performing the
difference between the residual displacement field after two distinct cycle loadings. The
shakedown limit turns out to be quite lower than the plastic collapse limit for some
defect configurations. The direct shakedown analysis method by a kinematic approach is
found more economical and reliable than marching solutions achieved by commercial
code.

(a) axial ellipsoidal slot (ABAQUS) (b) axial ellipsoidal slot (Kinematic approach)

Figure 4: the comparison of incremental collapse mechanism.

CONCLUSIONS

The integrity assessment of pressurized defective pipelines with part-through slots has
been carried out both by an elastic-plastic time-stepping finite element analysis and by
direct methods of limit and shakedown analysis based on the kinematic limit theorem and
Koiter’s kinematic theorem, respectively. Numerical applications have shown that the
proposed direct (or “simplified”) methods, in a finite element setting, represent a cost-
effective, numerically stable and reliable tool for integrity assessments of the structures
considered herein.
Therefore, in the engineering practice, limit and shakedown analysis might supplement,
or replace, both convenient semiempirical formulae and laborious step-by-step evolutive
elastic-plastic computations for the failure analysis and integrity assessment of flawed
gas-ducts and pressure vessels, especially in the presence of variable-repeated internal
pressure fluctuating according to an unpredictable time history.
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