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Abstract

In this paper a FM generalised model is proposed to solve quantitatively the problems of brittle
ductile transition as a function of dimensions and strain rate, starting from traditional parameters
like Charpy V and Drop Weight Tests Energy. This energy measurements are converted to FM pa-
rameters as Ctod, Ctoa, J and T making possible the passage from a qualitative approach to a
quantitative one. In this model, using a very simple, inexpensive and traditional test , is solved the
problem of transferability of results from small specimens to full scale structures.

The model was tested satisfactorily on materials of different toughness .

Nomenclature

a crack length

a; initiation crack length, may be different from a,
B crack arrest length

ag initial crack length

cmod crack mouth opening displacement (clip gauge displacement)
ctod  crack tip opening displacement

ctod, critical ctod

ctod;,  plain stain limit ctod; end of elastic field

ctodix kinematics limit ctod; cusp point in the motion’s centroids
ctod; ductile initiation ctod

ctoa crack tip opening angle

C calibration function

Cr cristallinity (% of cleavage fracture)

B thickness

F applied load

F. experimental applied load

Foe plastic collapse load

Fen linear elastic load derived from LEFM

J J - integral

Kie critical stress intensity factor

K, stress intensity factor

L ligament

M applied bending moment

neck  elongation of ligament due to localised lateral contraction (necking)
L rotational function that locates the apparent centre of rotation

L rotational function that locates the instantaneous centre of rotation
R, Priest’s law parameter

Rewit  radius of curvature of anvil

Rewp radius of curvature of tup

s load application displacement

S span length

S. % of shear area

Se Priest’s law parameter

SE total fracture specific energy (energy divided by initial ligament area)
S external specimen length

fracture profiles co-ordinates
(Xs,¥e) centroids co-ordinates

—
o
=
=
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1y temperatureat which Priest’s law is determined

toud minimum temperature at which the fracture surface is 100% shear (crack arrest tempera-
ture) Rosin maximum temperature at which the fracture surface is 100% cleavage (nihil
shear area temperature)

tod: maximum temperature at which the fracture initiate in plane strain condition i.c. clastic

ficld (nihil ductility temperature).
U, total absorbed energy

uU; initiation absorbed energy
Y Young's modulus
o specimen half rotation angle
o angle at which the specimen skips from the anvil
o, angle of ductile initiation it was assumed only for blunted notches equal to ctoa/2
Q calibration geometrical function '
Bo calibratioin dimension and geometrical function
O¢ flow stress
oy yicld stress \
0, constant equal to 4/3 P ———
LIGAMENT
DISTORTION a,-f
Introduction P e

The problem of brittle ductile
transition is analysed using as
inputs energy and cristallinity
transition curve of two sets of
different ligaments speci-
mens. Where used all bound-
ary conditions that came
from the experiences gained
in this field and with the help
of a generalised model was
found the compatibility be-
tween quantitative data and
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model to give physical - *___ﬁr_:’—t— R AT
meaning to FM and under- R e
stand the parameters that INITIAL LIGAMENT

govern the cleavage and duc-
tile fracture and the energy
scale factors. This approach
is important for simplify FM test methodologies and for giving input in FE
analysis when the problem of transferability from small specimen to full scale
structure is important.

FHL | PHYSICAL INTERPRETATION OF FRIEST'S LAW

1) Priest’s Law
Priest’s Law [2] [3] govern the energy scale factors for ductile fracture.
The law is given by the following relation:

SE = R. +S. (W-129) (1.1)



The specific energy SE (total energy divided by the initial ligament area) is propor-
tional to the ligament length through two constant R. and S.. The total specific
energy is divided into two components according the two constants, see fig.1.Both
two constants depends on strain rate.They do not depend on thickness unless B
(specimen thickness) tends to 0. R. depend on process zone (necking of speci-
men) S, depend on plastification far from process zone i.e. ligament distortion
deformation (far from the necking zone in plain strain condition). At least two
diferent ligament spesimens are necessary for determining Sc and Re

2) Determination of CTOA

In this paper it was chosen for fracture parameters the geometrical ones be-
cause more easily to visualised and to understand from physical point of
view.Later it is easy to pass to the energetic parameters like J (J integral) or T
(tearing modulus)[4] [5]. The geometrical approach using Ctod, Crack Opening
Displacement and Ctoa , Crack Opening Angle, makes possible the use of the
Theory of Fracture Kinematics, FK as a fundamental instrument [10] [11] [6] [8]
(see Appendix A).According to this theory the specific ductile failure energy (see
paragraph A.S) for a bending specimen is:

SE(1)=0,06(t)(2ai/tan(ctoa/2)+1/r.)Le tg[ctoa/2]/4 (2.1)
where o half of initation angle;8, = 4/3 is the constant for determining the plastic
collapse load for bending;r.,o = 0.4 is the apparent rotational constant in the ctod
calibration(see appendix) and o((t) is the flow stress at t temperature of =
1.15 oy ,where oy is the yield stress. For dynamic tests a dynamic oys must be as-
sumed. Equating eq(3.1) and (1.1) one obtain ctoa(t):

ctoa= 2 arctg{[4 R./L¢ + 4S.)/[ odts) 0: (2 aw/tan(ctoa/2)+1/ra,) |} (2.2)
where t; is the temperature at which is determined S. and R. for fatigue crack a is
small compared ctoa/2;for blanted notch o; may be equal to ctoa/2[12]. In this case
eq (2.2) for low and medium toughness becomes:

ctoa = 2 arctg{[4 R/Lo + 4S.)/[odts) 0: (2+1/r.)]} (2.3)

One can translate this energetic approach into a geometric one using as a link the
flow stress.Eq (2.3) becomes:

ctoa = 2 arctg[tg(ctoay/2) + neck/Lyg] (2.4)
where ctoay is the plane strain ctoa and is the parameter responsible for distortion
energy of the ligament. It is given by:

ctoag(t) = 2 arctg{4 S.)/[odts) 0. (2+1/rw)]} (2.5)

and neck is the elongation of the ligament (displacement) due to localised lat-
eral contraction (necking) responsible for the increment of energy respect to the
one due to plane strain condition.Neck is given by:

neck(t) = 4 Rc /[odts) 6, (2+1/ra0)] (2.6)
The ductile energy in plane strain SE, becomes according to eq (2.1)
SEo= 0,01 2a,/tan(ctoay/2)+1/r,0)L tg(ctoay/2) /4 (2.7)

The value of ctoa is increased respect the plane strain one for the effect due to
the localised lateral contraction of the ligament.

Ctoa in plain strain condition (ctoas ) is a real material parameter
(independent on dimensions temperature and strain rate).
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Both ctoa and neck are not dependent on temperature, yield and strain rate..
Ctoa depend on initial ligament.

There are some experimental evidence produced at CSM [7] that shows the inde-
pendence of ctoa from strain rate.The consequence of this is that ductile specific
energy depends on flow stress (i.e. temperature strain rate ), ligament and
ctoa.

3) Generalised model of brittle ductile fracture with temperature

3.1) Flow stress variation with temperature

For the variation of flow stress with the temperature the following relation was
assumed:

olt)=cp exp[-(273+t)/to] (3.1.1)
Where op tor are two constants obtained by the values of of determined at two
different temperature one of which is t3 .

3.2) Brittle Fracture Initiation in Plane Strain Condition

Now the following hypothesis based on experience were assumed :

The steel has an elastic-plastic behaviour.One has practical plain strain condi-
tion when there are elastic condition.A ctod limit was established that de-
fined this field, equating the load Fg, obtained from LEFM with the F, deter-
mined by PC (plastic collapse),taking into account the hypothesis of elasto-plastic
material The two theoretical loads are:

Fa= K; B V(W) / flag/W) (3.2.1)
where K, is the Stress Intensity Factor in mode one and f{ay/W)-is a FM calibra-
tion function.Choosing ctod instead of K, as fracture parameter, using the following
relation

K, =[Y o(t) ctod]"? (3.2.2)
where ctod is given (see also appendix A):

ctod = 2r,Ly sin (o)

where Y is the Young Modulus and r, is a rotational function.

Starting from equality of internal and external work

Fp ds =2 Mg da (3.2.3)
where M,. is the plastic collapse resisting bending moment, due to internal forces,
this time with the real ligament given by:

M,. = 0, 0t) B [Lo/ cos(a)]’ / 4 (3.2.9)
where F,. is the external force applied and s is the displacement given by [8]:
s=Stg(a) /2 - (W+ Ryp+Runvi)[1-cos(ar)] / cos(ar) (3.2.5)
the derivative of s respect to o is:

ds/da = [S/2 - (W + Rugp + Rumat)sin(a)] / cos’(cx) (3.2.6)
From equation (3.2.3) one obtains:

Fpe = 0; o¢(t) B Le/{2[S/2-(W + Ry + Ru)sin(a)]} (327

for small value of a ( i. . medium and low toughness steels) eq (3.2.5) and (3.2.7)
becomes:

s =S tg(a) /2 (3.2.8)
Fp=0;0/()BLd /S (3.2.9)

74



where S is the span length, Ryp and Ruwii the curvature radius of tap and anvil

The limit of plain strain conditions is reached when the critical LEFM load Fgy is
equal to the PC one Fy..So equating eq (3.2.1) and (3.2.9) using (3.2.2) one obtains
the value of ctod at which this condition is reached: :
ctody, = or(t) [f(as/W) 02 L& AS*W Y) (3.2.10)
The ctody, is geometry ,dimension and yield stress dependent, and thus also tem-
perature and strain rate dependent.At this value of ctod the plane strain condition
and the validity of LEFM end and the Plastic Collapse Failure Mode begins.Now a
critical ctod is defined, ctod., as the one at which cleavage fracture takes
place.The ctod. is only function of temperature and is not dependent on di-
mensions even if the plane strain conditions are not respected. Also it seems
that ctod. does not depend on specimen orientation (longitudinal or transverse
according to experience)Then the condition of initiation of cleavage fracture in
plane strain is:

ctod.=ctod ctod.<ctod;, ctoa=0 F=f(ag) (3.2.11)
When this condition occurs the fracture initiates in a brittle mode and ctoa is equal
to 0. If ctod. is lower than ctody the fracture is in plane strain  and is valid
LEFM.The load during this phase is given by eq (3.2.1), and thus is function of aq
and ctod.

3.3) Brittle Fracture Initiation after Plain Strain Condition

In this case the condition of initiation of cleavage fracture in plane stress is:
ctod.=ctod ctod, < ctod, ctoa=0 F = {(Ly) (3.3.1)
The load in this case is given by eq (3.2.7) or (3.2.9), so is function of L and o
3.4) Ductile Fracture

Now a ductile initiation ctod is defined, ctod; (see paragraph A.1),as the one at
which ductile fracture initiates ( This is an engineering model. There is a good
agreement only if one considers the global propagation and ignores the crack growth
transient initial part) .When this condition occurs the fracture starts ductile and
the ctoa is different from 0 and the value is given by eq (2.4).To define a ctod; the
initiation angle must be known.The hypothesis is assumed that for ductile fracture
the initiation angle is lower or equal to ctoa depending how sharp is the notch
[12].For blunted notches ctoa was assumed equal to the initiation angle, the
half of which will be called o; .The model that follows is based on this as-
sumption.Ductile fracture initiates when:

ctod = ctodi(Le) ctod, > ctodi(Ly) ctoa>0 (3.4.1)
Where:
ctod; (L) = 2 r, Lg sin(a) = 2 ra Le sin(ctoa/2) (3.4.2)

For determining ctod; see paragraph A.1); any case ctod; is ligament and ctoa de-
pendent.

3.5) Load determination during initiation and propagation

The relations (3.2.5)(3.2.7),(3.2.8),(3.2.9) are valid for all points of propagation
with a instead of a;. For initiation is more accurate to use:

a = ap + ctod sin(a) a; = ag + ctod sin(ay) a =ap (3.5.1)
where a; is the a at initiation (in this case the crack extension is due only to geomet-
rical variation of ligament not to crack growth). During propagation a(ct) has to be
obtained by integration of eq (a.4.1) Appendix A
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a (ot)= W-Ly cos(o-0u)™ exp[-r. (a- ai)/tg (ctoa/2)]

The simplified formula obtained from eq (a.4.2) is:

a (0)= W-Lg exp[-r.o (o - ai)/tg (ctoa/2)]

Fo(a) = 0: or(t) B L{a)’ /{2[S/2-(W + Rap+ Runi)sin(@)]} (3.5.2)
Simplified expressions for load and displacement valid for low and medium tough-
ness steels are:

Fp(@) =0;0(t) B L(a)’ /S (3.5.3)
s = S/2 tg(a) (3.54)
where L is the component of the ligament on the x axis, see fig A.3.

L(a) = W-a(aL) (3.5.5)
The real ligament is L/cos(ct)

3.6) Arrest of Brittle Fracture
The condition of brittle propagation is

ctod, < ctodi(L) (3.6.1)
The condition of ductile propagation is:

ctod. > ctodi(L) (3.6.2)
In propagation ctod; is given by eq(3.4.2) changing Lo in L :

ctod; (L)= 2 r, L sin(a;) = 2 r L sin(ctoa/2) (3.6.3)

For determining ctod; see Appendix 1.So because a grows during propagation ctod;
decreases.At a certain value of a there is a passage from the condition of brittle
propagation (3.6.1) to the one of ductile propagation (3.6.2).

The load also in this case is given by eq (3.5.2) or (3.5.3) if the fracture starts
after plane strain condition .The load is given by eq (3.2.1) if fracture initiates in
plane strain condition. The crack arrest condition is:

ctod. = ctod., = ctod(L) and a=a, (3.6.4)
3.7) Experimental determination of ctod, as a temperature function
It was assuming the hypothesis that the mathematical function describing physically
the increase of ctod. with the temperature is an exponential function of the follow-
ing type:

ctod.(t) = g exp(h t) 3. 7.1
Where the constants g and h must be determined statistically from the experimen-
tal cristallinity transition data, imposing the condition that the eq.(3.7.1) is the best
fit of the points determined by the crack arrest condition eq.(3.6.4). During the duc-
tile-brittle transition the remaining ligament L after cleavage propagation is:

L = Lo [100-Cr(t)] / 100 (3.7.2)
ctod.(t) =ctodi(L) =2r,{ La[100-Cr(t)}/100} sin(ay) =2r,L sin(ctoa/2) (3.7.3)
Where Cr.(t), experimental cristallinity, is the percentage of cleavage fracture at t
temperature. All the value of Cr.(t) equal to 0 or to 100 must be taken away.
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4) Shear area determination

Considering the part of ligament in which was developed cleavage fracture delim-
ited by a; and a., one easily obtain that cleavage fracture percentage Cr, cristallinity,
is:

Cr=100 [ Lo-(ac-2;)] /Lo Sa = 100-Cr (4.1)

Where S, is the shear area percentage

Remembering that PC loads are proportional to the square of the ligament ; it is
possible to obtain the same formula substituting the square root of corresponding
loads for instance from experimental diagrams.

5) Generalised FM relationships

5.1) Fundamental Fracture Parameters used in this paper

The following FM parameters where used. It is important to note that fracture is
deformation controlled and not stress controlled.

Ctod responsible of the deformation at crack tip .

Ctod, maximum ctod at which the specimen is in a plane strain condition

Ctod, ctod at which cleavage fracture take place both in plane strain and plane
stress. Also it seems that ctod. is not depending on specimen orientation
(longitudinal or transverse)

Ctod; ctod at which
e ductile fracture initiates.
3 i Ctoay,  responsible of
9 |£1_ 55 gy o S ductile crack propagation
3 A ST AR through ligament in plane
}:‘ strain condition
S Ctoa responsible of
y i _ ductile crack propagation
TEMPERATURE through ligament not in
Lot hadabam a “‘"‘4—%@ plane strain condition
L [tz Of course if ctoa is equal
R - ML to 0 one has cleavage
y - fracture propagation.
P TEMPERATURE Fig. 2 reassume all the
‘ conditions and gives a
bk physical quantitative in-
terpretation of the brittle
g - ductile transition phe-
\ L prange nomena.
e — *-"'"'::mn“m 5.2) Equivalence of
: : J and T with Ctod
NEAT  wNOT CAT TEMPERATURE an d Ctﬁa
:ﬁ:s#‘lzgﬁrﬁt‘%:::LThTWH INTERPRETATION OF BRITTLE -DUCTILE It iS pcssible tﬂ pass ﬁ_om

ctod and ctoato Jand T
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[8] and Appendix A.
J=0; or Loa=0;0r actod / (2 rusin(a))=0; orctod/ (2 ra) (5.2, 1)
J.=0; 0¢ctod. /(2 1,) and T=0 (5.2.2)
If ctod. is less than ctody then J.isalJ,.  (plane strain condition ).
J, =0, o Loa; =0, ora ctod; / (2 r, sin(ay)) =06; oretodi/ (2 r.e)(5.2.3)
J. = Ji+0: o((a-ag) tg(ttﬂﬂ.ﬂ) / rea (5.2.4)
T = 0, Y tg(ctoa/2) /( r« o) (5.2.5)
J; J, and T as well as ctod; and ctoa are temperature, strain rate, ligament and
thickness dependent. For this reason they are not material parameters.

5.3) Scale Factors

Of is temperature and strain rate dependent.

Ctod for the same angle of rotation depend on a/W, Lo, Y, or (temperature
,strain rate)

Ctod,, has the same dependence of ctod

Ctod. is independent of geometry and dimensions and specimen’s orientation, it
depends only on temperature and it is a material parameter as K. , but it is valid
both in plane strain and plane stress.

Ctod; has the same dependence of ctod. It is not dependent on temperature and
strain rate, but is dependent on ctoa ligament and on notch severity.

Ctoa depends on dimensions and specimen’s orientation ,not on temperature and
strain rate.

oy is proportional to ctoa and was assumed equal to ctoa/2.For blunted notch
Probably from a physical point of view o; and ctoa/2 are the same thing, a distortion
angle.

Ctoa, is independent of dimensions, temperature and strain rate and it is a material
parameter as K. It is the ctoa in plane strain condition.

Conclusions

The problem of brittle ductile transition and the scale factors, that makes any
interpretation of ductile deformations very difficult, were analysed.The scope
of this paper is to return to the physical problems, to put them as a boundary
condition and to transform them into a mathematically consistent model to
be used in a finite element approach.This because specially the use of J, that is
an extremely valid mathematical instrument, very often lead to neglect of the
physical meaning of the fracture process and of the scale factors. The FM and
J testing methodologies are very complicated and probably such sophistication
is not necessary.For this reason the simple traditional energy transition curve
were analysed and made quantitatively compatible with a J approach. Finally
the model proposed tries to solve the problem of transferability of results from
small specimens to full scale structure.
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Fig. Al Pictorisl representation of a specimen during crack growth
governed by motion’s centroids

Appendix A

Theory of Fracture Kinematics

The condition for brittle or ductile fracture and the rélation between loads and dis-
placement were examined.

It is necessary to have one instrument that links FM parameters like, ctod
or ctoa, to the crack length and the angle of rotation of the specimen i.e. dis-
placement .

This mathematical instrument is the Theory of Kinematics of Rigid Bodies.

A specimen during deformation can be represented by the two sections in the
elastic field (rigid bodies because the very high Young Modulus) linked by an
undefined plastic zone . For this reason it is possible to apply the theory of
FK.

The relative motion of two rigid bodies ( one fixed on the other mobile ) is
completely defined when one has the motion’s centroids.

The motion’s centroids are the locus of the instantaneous centres of rotation.
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The centre of instantaneous rotation is defined when one knows at the same
time during the motion two different relative displacements, in a specimen for
instance cmod and ctod.

Two type of centroids can be defined one fixed and one mobile. Both the cen-
troids are fixed to their own rigid bodies (the two specimen’s sections with the
exception of the plastic part).

The motion of two rigid

bodies is  obtained ctod /cmod = r, Ly / (2 + 1, o)

making purely rotate ’ Sstmat = n G L L

the mobile centroid on
the fixed one fig A.1.
The centroids assume
in this theory the physi-
cal meaning of a plas- n
ticity function, that can ~
be determined by
studying the motion of

the two half specimens

distant from the plastic

zone, avoiding difficult W e
solution problems.
From a ctod calibration
(relation between cmod
and ctod) it is possible
to derive mathematically the motion’s centroids during initiation.The distance
of the instantaneous centre of rotation i Lo, during initiation may be ob-
tained, instant by instant from eq. (a.1.1) and (a.1.4) The ctod’s calibration
and particularly the rotational function r, becomes a plasticity function that
can be determined experimentally avoiding the crack tip singularity.During
propagation the following hypothesis must be assumed:

The fracture surfaces form with the symmetry axis an angle equal to half of
ctoa.Ctoa is constant during all propagation. This hypothesis is engineering
consistent with experimental evidence [12][8].The instantaneous centre of rota-
tion is on the symmetry axis at a distance equal r;L; r; can be assumed equal
to ru, so also in this case it easy to obtain the centroids.Finally it is possible to
obtain from the broken specimen’s profiles ctoa, ctod and load displacement
curve applying all the hypothesis done see fig A.4.From one of the four dia-
grams of fig A.4 is possible to obtain the other three.

Apparent Centre of Rotation

Instaniancous pulr: of Rotation

/ 1 axis

Fig. A2 Geometrical relutions during initiation

A.1) Ctod calibration

With reference [8] [10][11] to fig. A 2
d(ctod) / d(cmod) = €); (a.1.1)
ctod / cmod = Q, (a.1.2)
where the index i and a indicate instantaneous and apparent and cmod the crack
mouth opening displacement, (the opening of the clip gauge).
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Q,=[1+a/(r.Lo)]" (a.1.3)
Qi =[1+a/ (L) ]" (a1.4)
the limit of Q, for cmod going to infinite is 2,0

Q.o=[1+2/ (Lo ]’ (a.1.5)

r.o rotational constant has a value of 0.4 for specimens with a ratio ap/W in the range
of 0.4,0.7
The experimental calibration is given by [8] [10] [11]:

ctod = £, cmod (a.1.6)
C = 1 - exp(-fo cmod) (a.1.7)
Bo =4 Q.Y / (n 5, L) (a.1.8)
from previous equations and from fig.(A.2) one obtains:

ctod =2 r, L sin(a) (a.1.9)
r,= a9 (o C /[Lo (1-Q2.0C)] (a.1.10)
r, = ap/ {Lo [d(cmod)/d(ctod) -1]}

= a/{ Lo[Quo(1-(1-Bo cmod) exp(-Bo cmod)]"'-Lo} (a.1.11)
o = arcsin[(cmod - ctod)/(2 ao)] (a.1.12)

r; has a maximum at which the motion’s centroid, see paragraph A.3, has a
cusp that has a physical meaning. At this point the hinge around which the
two specimen parts rotate is completely developed (the centre of rotation, ac-
cording to slip lines in plane strain condition with ag/W equal to 0.5, is at a dis-
tance equal to 0.45 Lg ).After this point the plane strain condition ends .
The maximum value of r; is 0.45 for a specimen with a,/W equal to 0.5. After
r; and r, tends to the same limit that is r,; practically for ductile material
during propagation r; r, ry coincide.The cusp condition is reached when dr;/
d(cmod) = 0 and Pe cmod = 2 . At this point is defined a ctodyx limit kinematics
at which is given a physical interpretation of end of plane strain condition. In the
past the physical interpretation of beginning of ductile initiation was also given [11].
During deformation between ctody and ctod; ctoa decrease from 180 degree
to the constant value of propagation with a very small crack growth. From engi-
neering point of view it was assumed initiation at ctod; with constant propagation
ctoa and was ignored the crack growth transient phenomena.

ctodiy = 2 Qo (1- exp?) / Bo (a.1.13)
remembering eq(3.2.10)

ctody, = or(t) [f(a/W) 02 Lo’ /(S’W Y)
(3.2.10)
equating ctody, (kinematics)to ctod, (theorical PC load =LEFM load) one can
obtain a theoretical Bor, instead of the experimental one Bg eq (a.1.8), and this
makes compatible the kinematics calibration with LEFM laws.

Bor= 2 Qo ( 1- exp™)/ ctod,, (3.2.11)
The ctod;at the initiation is eq. (a.1.9):
ctod; = 2 r, Lo sin (o) (a.1.14)

There is some evidence [12] that ctoa and 2 o; can be the same angle unless either
a sharp notches or brittle fracture makes start fracture before a; =ctoa/2

A.2)Fracture Profiles
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Assuming x,y axis as in fig A.2 the fracture profiles co-ordinates during initiation
remembering eq(3.5.1) are:

xr= a- 2= ctod sin(a) / 2 x¢ = ctod cos(a) / 2 (a.2.1)
during propagation:
Xr = Xg+2 - 4 Yr=Yat ] (tg(ctoa/2-a) da (a.2.2)

A.3) Motion’s Centroids
Assuming x,y axis as in fig A.2 the centroids co-ordinates during initiation are:

x. = x;+r; L cos(a) Ye=Y¥c-riLsin (@) (a3.1)
during propagation
X =Xr +ra L cos(a) Ye=Y¥r-rw Lsin (a) (a3.2)

The centroids, for
ductile materials,
have two cusps that
have the two fol-
lowing physical
meaning: a) End of
linear elastic field

Y 7B ] |57 (plane strain condi-
il 3 +“M tion)
x b)Geometrical ~ de-

creasing of the liga-
ment during initia-
tion or crack exten-
sion.

l AC = rilda [ cos{x) = sin{eton/T) da Alsia-clasl)

¥ nnn

AB = da | sindo-rioa/l|

Fig. A3 Geometrical relstions durlng propagation

A.4) Crack propagation

With reference to fig. A.3, remembering the hypothesis of propagation it possible to
derive from simple geometrical consideration the propagation fundamental for-
mula:

da/da=[sin(ctoa/2)cos(ct)]/[cos(ctoa/2-a)r; L] (ad.1)
A simplified formula is:
do/da = tg(ctoa/2)/(r; L) (a.4.2)

where ri is the instantaneous rotational function taken at the moment of initiation
For ductile materials r; can be taken constant equal to r,. The ctoa also can be as-
sumed constant for all propagation, there is much evidence of this [12].
The integration of differential eq.(a.4.1) and (a.4.2) from a=o; to a=ay must be
performed. Where o is half of the rotation angle at which the specimen, not com-
pletely broken, skips from the anvil. The geometrical relation is:

ar=[S/2 - Ry - (S/2+ydcxr)) cos(ar )] / sin(oy ) (a.4.3)
Where S, total length of the specimen and yr(os ) is one of the co-ordinate of
fracture profiles, see paragraph A 2. Where a has to be obtained by integration of

eq(a.d.1)

a = W-Ly cos(ara;)™ exp[-r. (ou- cu)/tg (ctoa/2)] (a.4.4)
The simplified formula obtained from eq (a.4.2) is:
a=W-Ly exp[-r. (- o)/tg (ctoa/2)] (a.4.5)

a; could be taken equal to ctoa /2
A.5) Specific energy determination
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A.5.1) Initiation specific energy

Starting from

d(SE) =2 M, /(BLy)d a (a.5.1.1)
where

M = 0,0, B Lo’/4 (a.5.1.2)
One obtains: ,

SE; = 60, Lo o /2 (a.5.1.3)

from eq.(a.1.14) multiplying and dividing for 2 r,sin(a; ) one obtain the classical
FM relation :

SE; = 0,0, ctod; i /(4 r, sin(a))= 6;0y ctod; /(4 ruw) (a.5.1.4)

A.5.2) Propagation Energy
Starting from:

d(SE;) = 2 M (da /da) /(BLo ) da (a.5.2.1)
where

M=0,0,BLY 4 (a.5.2.2)
for eq. (a.4.2) we obtain:

d(SE,) =2 M tg(ctoa/2) /(i BLLo)da (a.5.2.3)

Integrating with ctoa and r; constant from a=a; to W remembering that da = -dL ,
one obtains:

SE,= 06,0, Lo tg(ctoa/2)/(4r) (a.5.2.4)
the total specific energy SE = SE;+SE, assuming that for small angles the tangent s
equal to the angle, and that r; for ductile propagation can be taken equal to r. is:

SE = 0,5, Lo (2 aw/tan(ctoa/2) + 1/ry) tg(ctoa/2) /4 (a.5.2.5)
remembering Priest’s Law:
SE=R+S. Lo
one obtains:
ctoa = 2 arctg { (R+S. Lo)/[0: (2ai/tan(ctoa/2)+1/raq) o,lo/4] } (a.5.2.6)

for fatigue crack oy is small compared ctoa/2for blanted notch oy may be equal to
ctoa/2. In this case eq (a.5.2.6) for low and medium toughness becomes:

ctoa = 2 arctg{ (R+S. Lo)/[0: ( 2 +1/ray) o,Lo/4]} (a.5.2.7)
In paragraph 2 the formulas are different because they take into account the modi-
fied Priest’s Law and also it was used instead of oy, of

A.5.3 ) Methodology for determining a ; and Ctoa from experimen-
tal load-displacement diagrams

With reference to [8] it is possible obtain directly from a load displacement curve

ctoa and o; The relation is the following.
ctoa =2 arctg [r. (U-U(s)) / (Fe(s) S/4)] (a.5.3.1)

Where U, is the total energy U(s) is the energy adsorbed at s displacement and
F.(s) is the experimental load taken from a load -displacement curve at s displace-
ment. F.(s) must be taken during propagation and it’s value must be approximately
half of the maximum load.

For eq.(a.5.2.4)

U,=U;+ U, = U+ SE, LyB = Ui + 8,0, B Lo* tg(ctoa/2) /( 4 r.0) (a.5.3.2)
one obtains:
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U;= U, - 8,0, B L¢* tg(ctoa/2)/ (4 rag)

For eq (5.1.3)
a; =U;/ (0.0, LB /2)

3 MINTS SIATIC BDWING TIST LOAB-B ISFLACENENT DinGhan

SPECINE  enJeldd.alt = 76
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0.8 READ DN {Lows"Z)n . 000
= CO0A EN (Lowe“Zhe 2,684
L CT08 IN (Lam"2)= 197
(]
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EMERGITIC .......
KIKETIC —

F.N. PARMIETERS CT0A | degres ) v 3.8 CICD  fma) = 3601

Ji Uowm™Z) & 3,89 T = 12,6

Fig- Ad Analysis of load-displacement curve using FK. It is poasible 1o
see the ugreement beiwees the ¢xperimental and the theoretical daia.

(a.5.3.4)

(a.5.3.5)
Analysing with this method-
ology different ligament
specimens of different steel it
was possible to verify the as-
sumptions of this paragraph
and that for some conditions
o is near half of ctoa.
Was also possible at the same
time derive load-displacement,
crack extension-displacement,
fracture profiles and J.-crack
extension curve.
The agreement of experimental
with  teorethical results ob-
tained from FK, having as input
ctoa and o, is good [8] [12]
see fig. A 4.

It is also possible to demonstrate the experimental evidence that load-displacements
curve are omothetic [6] and that the energetic relation during propagation is:

L(s) = Lo [(U; -U(s))/(U -Uy)]*

&84

(a.5.3.6)



