Determinazione dei Parametri di Approccio Locale per un Acciaio 27NiMoCr37

Bonora N. e Iacoviello F.

Dipartimento di Ingegneria Industriale, Università di Cassino

Sommario

L'Approccio Locale è strettamente legato al particolare micromecanismo di frattura che induce la rottura del componente o del materiale e consente di studiare l'evoluzione del progressivo stato di danneggiamento attraverso concetti di meccanica del continuo. L'elevata peculiarietà di questi modelli sottolinea la necessità di un'accurata identificazione dei parametri specifici del materiale, indispensabili per un loro uso applicativo. Nel presente lavoro vengono illustrate e discusse le procedure attraverso le quali è possibile determinare i parametri di approccio locale alla frattura, sia duttile sia fragile, nel caso di un'acciaio basso legato. Nel caso di frattura fragile, in particolare il clivaggio, viene presentata in dettaglio una procedura per la determinazione dell'esponente di Weibull $m$ e della tensione critica $\sigma_c$ necessari per la determinazione della curva di probabilità di frattura. Relativamente alla rottura duttile è stato preso in esame il modello di Gurson, modificato da Needleman e Tvergaard per il quale sono stati determinati i coefficienti di porosità.

1. Introduzione

Con il termine di Approccio Locale si indicano una serie di modelli e di approcci ai fenomeni di frattura nei materiali, complementari alla meccanica della frattura tradizionale, sviluppati su presupposti di tipo microstrutturale. I modelli di approccio locale attualmente disponibili, i quali si differenziano a seconda del tipo di frattura che intendono studiare, sono molti ed il loro numero aumenta con l'aumentare dell'interesse verso questo differente modo di fare meccanica della frattura. Per quanto riguarda la frattura per clivaggio, il modello più noto è quello proposto da Mudry\(^1\) che consente di determinare la criticità di una sollecitazione su di un componente in termini di probabilità di rottura attraverso il calcolo della tensione di Weibull. Per quanto riguarda la frattura duttile, esistono modelli, raccolti sotto il nome di Continuum Damage
Mechanics\textsuperscript{2,3,4}, nei quali il danno è una delle variabili termodinamiche del problema e con i quali si cerca di descrivere la risposta di un materiale danneggiato attraverso lo sviluppo di un opportuno modello costitutivo.

Tutti questi modelli, che partono da osservazioni relative ai micromecanismi di frattura, poter essere applicati richiedono la determinazione di alcuni parametri caratteristici del materiale in esame. La fase di identificazione delle costanti è di fondamentale importanza per il corretto impiego del modello e per la comprensione dei risultati.

In questo lavoro vengono presentate le procedure per mezzo delle quali è possibile determinare le costanti necessarie per l’applicazione del modello di Mudry alla frattura fragile e quello di Gurson\textsuperscript{5} modificato per la frattura duttile. I risultati che vengono discussi rappresentano il contributo dell’Università di Cassino al secondo Round Robin sull’approccio locale indetto dall’ESIS e coordinato dal Fraunhofer Institut di Friburgo (Germania).

2. Frattura Fragile.

La Meccanica della Frattura (MdF) tradizionale è sicuramente uno degli strumenti fondamentali per la comprensione e previsione dei meccanismi associati alla frattura fragile. Tuttavia sono molte le situazioni in cui, pur in presenza di una frattura di tipo fragile, i modelli di MdF non riescono ad interpretare le evidenze sperimentali come ad esempio nel caso di shock termico, frattura nella zona di transizione, modi misti, etc..

Il modello di approccio locale proposto da Mudry, è definito su base statistica e consente di valutare il livello di criticità di una sollecitazione attraverso la curva di probabilità di rottura definita da:

\[
p_r = 1 - \exp\left[-\left(\frac{\sigma_W}{\sigma_u}\right)^m \frac{V}{V_0}\right]
\]  

(2.1)

dove \(\sigma_u\) è la tensione critica di clivaggio, \(m\) è l’esponente di Weibull e \(\sigma_W\) è la tensione di Weibull definita da:

\[
\sigma_W^m = \int \frac{\sigma_1^m}{V_0} \, dV
\]  

(2.2)

dove \(\sigma_1\) è la tensione principale massima e \(V_0\) è il volume elementare per il quale è garantita l’indipendenza statistica delle variabili. Tutti i dettagli relativi alla definizione della probabilità di rottura sono ampiamente discusse in Mudry\textsuperscript{1}, Milella\textsuperscript{6}, Bonora\textsuperscript{7}.

Per poter disporre della curva di probabilità di rottura su di un componente è necessario conoscere i valori dei tre parametri \(\sigma_u, m e V_0\) per il materiale in esame. La dimensione del volume di riferimento deve essere sufficientemente piccola da garantire l’indipendenza statistica
ma abbastanza grande da permettere di definire dei valori medi delle componenti di tensione anche in presenza di elevati gradienti. Normalmente, la scelta di $V_0$ ($V_0=S_0 \cdot B$, dove $B$ è lo spessore) pari a 10-15 volte la dimensione del grano risulta essere adeguata.

La determinazione dei due rimanenti parametri viene effettuata in modo iterativo in quanto esiste un legame non esplicito tra la tensione critica di clivaggio e l'esponente di Weibull. Dal punto di vista sperimentale è necessario disporre di una popolazione di dati relativi ai valori di tensione di frattura a bassa temperatura. Normalmente questi dati vengono misurati su provini di trazione a geometria cilindrica con intaglio circonferenziale in quanto questo tipo di provino presenta i seguenti vantaggi: a) consente di localizzare la frattura, b) non è soggetto ad alcun effetto associato allo spessore e c) permette di far variare la triassialità semplicemente cambiando il raggio dell'intaglio.

Secondo Beremin \(^8\), la scelta del raggio di intaglio non ha alcun effetto sulla determinazione della tensione critica di clivaggio valutata attraverso la tensione di Weibull. Tuttavia, vedi Bonora \(^6\) e Pineau ed Amar \(^3\), un certo effetto della geometria può essere presente e pertanto l'impiego di provini con differenti raggi di intaglio consente una valutazione più accurata dei parametri di clivaggio.

I dati sperimentali che vengono presentati di seguito si riferiscono ad un acciaio di produzione tedesca denominato 22NiMoCr37, la composizione e le informazioni relative alle proprietà di questo acciaio sono date in \(^10\). I dati, riportati in tabella 1, si riferiscono a 5 provini di trazione con un raggio di intaglio circonferenziale di 2 mm. Le prove sono state condotte a -196°C in modo da garantire una frattura per clivaggio puro, \(^11\). In fig. 2 vengono riportate la geometria e le dimensioni dei provini impiegati.

<table>
<thead>
<tr>
<th>Specimen label</th>
<th>Fracture Load [N]</th>
<th>$\Delta \phi_f$ [mm]</th>
<th>$W$ [MPa] (m=22)</th>
<th>$P_\tau$</th>
<th>$i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.06</td>
<td>26314</td>
<td>0.086</td>
<td>1922.340</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>33.07</td>
<td>26510</td>
<td>0.083</td>
<td>1941.381</td>
<td>0.9</td>
<td>5</td>
</tr>
<tr>
<td>33.08</td>
<td>25596</td>
<td>0.049</td>
<td>1722.089</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>33.09</td>
<td>25726</td>
<td>0.063</td>
<td>1730.632</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>33.10</td>
<td>25620</td>
<td>0.049</td>
<td>1723.666</td>
<td>0.3</td>
<td>2</td>
</tr>
</tbody>
</table>

*Tabella 1 - Riassunto prove sperimentali: dati a frattura e tensioni di Weibull corrispondenti.*

Le prove permettono di ottenere due tipi di informazioni: a) la curva carico-strizione ($P-\Delta \Phi$) con la quale verrà calibrata la risposta globale del modello agli elementi finiti; b) si costruisce una popolazione di dati per la determinazione di $m$ e $\sigma_n$.

Il calcolo della tensione di Weibull deve essere necessariamente fatto con gli elementi finiti (FEM): quanto più la risposta del modello in termini globali verifica le curve sperimentali $P-\Delta \Phi$, tanto più il campo di $\sigma_W$ sarà veritiero. Per il caso specifico è stato simulato un quarto della
geometria per ragioni di simmetria, impiegando un elemento ad 8 nodi in formulazione assialsimmetrica, bilinare con 4 punti di integrazione. Poiché il calcolo richiede che si sviluppino estese zone plastiche si è fatto uso di un approccio lagrangiano e plasticità finita.

Il modello, riportato in fig. 1B, ha un numero complessivo di 480 elementi e 1543 nodi con due gradi di libertà per ogni nodo. Figura 3 mostra come, nonostante la sensibile dispersione dei dati sperimentali, la risposta data dal calcolo FEM sia accurata fornendo una curva che inviluppa i dati sperimentali.

Il calcolo di $\sigma_W$ viene realizzato utilizzando un programma di post-analisi appositamente scritto che, per ogni punto di Gauss di ogni elemento e per ogni incremento di carico, provvede al calcolo delle tensioni principali e alla valutazione della tensione di Weibull per quei soli punti di Gauss che si trovino in regime plastico, secondo:

$$
\sigma_{W,|_{i+1}}^{m} = \sigma_{W,|_{i}}^{m} + \sum_{n=1}^{N_G} \left( \frac{\sum_{i=1}^{N_G} \sigma_{i,j}^{m}}{N_G} \right) \frac{V_{n}}{V_{0}}
$$  \hspace{1cm} (2.3)

dove $N_{ele}$ è il numero di elementi del modello, $N_G$ è il numero di punti di Gauss e l’apice $^p$ indica i punti per i quali è stato superato il limite elastico. Come si vede dall’eq. 2.3, il calcolo della tensione di Weibull richiede la conoscenza dell’esponente $m$ che in prima approssimazione può essere scelto arbitrariamente. La verifica della scelta di tale esponente potrà essere poi verificata sul piano $\ln[\ln(1/(1-P_f))]$ in quanto, in base all’eq. 2.2, $m$ ha il significato geometrico della pendenza della retta:

$$
\ln[\ln(1/(1-P_f))] = m \ln(\sigma_W) - m \ln(\sigma_u)
$$

Ai valori sperimentali del carico di rottura può essere associata una probabilità relativa di frattura utilizzando il seguente contatore:

$$
P_{f}^{exp} = \frac{i - 0.5}{N}
$$

dove "i" è l'i-tesimo valore della tensione a frattura presa nella tabella 1, ordinata in maniera ascendente, ed $N$ è il numero totale di dati disponibili.
Assumendo un valore di prima iterata per l’esponente di Weibull, si procede al calcolo della \( \sigma_w \) in funzione del carico applicato e si determina la tensione di Weibull corrispondente al carico di frattura per ogni valore sperimentale e la probabilità relativa ad esso associata.

Questa data vengono poi riportati sul diagramma \( \ln[\ln(1/(1-P))] - \ln(\sigma_w) \) dove il valore ipotizzato per \( m \) viene confrontato con il coefficiente angolare della retta che meglio interpola i dati sperimentali. Se questi valori differiscono tra loro l’analisi viene ripetuta utilizzando il nuovo valore di \( m \) trovato.

Normalmente dopo poche iterate il calcolo va a convergenza. In tabella 2 sono riepilogati i valori delle tensioni di Weibull (per unità di volume), per i successivi valori di \( m \) determinati a partire da \( m=22 \).

Il valore finale di \( m \) trovato per questo tipo di acciaio è di 16.69. Se si esclude nell’operazione di best-fit il dato relativo al provino 33.08, che si discosta maggiormente dall’andamento medio della distribuzione, si ottiene un valore di \( m \) ancora più basso di circa 12. In fig. 6 viene riportata la distribuzione dei dati sperimentali nel piano doppio logaritmico insieme alla retta di interpolazione.

Una volta determinato il valore di \( m \), il valore della tensione critica di clivaggio, \( \sigma_a \), è automaticamente determinato come il segmento che la retta interpolante stacca sull’asse delle \( y \).

In questo caso si è ottenuto per \( \sigma_a = 1923.98 \) MPa.

Il metodo presentato per la determinazione dei parametri di Weibull, noto anche come metodo della regressione lineare, è solo uno degli schemi di calcolo possibili. Khalili ed alt. \(^{12}\) hanno discusso e proposto alcune procedure di calcolo più raffinate.

Una volta completata questa fase di calcolo, si ha a disposizione la curva \( p_r - \sigma_w \) caratteristica del materiale in esame, fig. 7, che potrà essere direttamente impiegata per la determinazione del livello di criticità di un carico su di un componente strutturale.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>( W_m=22 )</th>
<th>( W_m=15.705 )</th>
<th>( W_m=16.884 )</th>
<th>( W_m=16.639 )</th>
<th>( W_m=16.69 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.08</td>
<td>1722.089</td>
<td>1804.284</td>
<td>1782.599</td>
<td>1782.599</td>
<td>1785.900</td>
</tr>
<tr>
<td>33.09</td>
<td>1730.632</td>
<td>1813.709</td>
<td>1791.787</td>
<td>1791.787</td>
<td>1795.124</td>
</tr>
<tr>
<td>33.10</td>
<td>1723.666</td>
<td>1806.024</td>
<td>1784.295</td>
<td>1784.296</td>
<td>1787.603</td>
</tr>
</tbody>
</table>

Tabella 2 - Valori delle tensioni di Weibull per le differenti iterazioni sull’esponente \( m \).

3. Frattura duttile: il modello di Gurson.

La MdF non consente lo studio dei meccanismi di rottura di tipo duttile. Pertanto è necessario sviluppare un modello che tenga conto dei micromeccanismi di frattura associati al campo di deformazione plastico. McClintock \(^{13}\) per primo ha osservato l’importante ruolo dei microvuoti nella frattura duttile. Successivamente Rice e Tracy \(^{14}\) hanno cercato di introdurre un criterio per la frattura duttile ipotizzando l’esistenza di un valore critico del rateo di crescita delle microcavità. Recentemente Gurson \(^{5}\) ha ipotizzato che le informazioni relative alla frattura duttile siano già contenute nella curva di trazione uniaxiale e che sia possibile descrivere
completamente il comportamento elastico, elasto-plastico e a rottura attraverso un modello di plasticità opportunamente modificato.

L’idea proposta inizialmente da Gurson consiste nel modificare l’espressione del potenziale plastico in modo da tener conto dell’effetto della crescita di eventuali microvuoti attraverso una variabile di danneggiamento da porosità, $f$.

Nel modello di Gurson la porosità non è una variabile termodinamica, eventualmente accoppiata ad altre grandezze come la deformazione plastica, (Lemaitre 2): la porosità, che dipende esclusivamente dal rateo di dilatazione del volume plastico, altera esclusivamente il potenziale plastico provocando una redistribuzione del tensore delle tensioni e dei flussi plastici. Secondo Gurson l’espressione del potenziale plastico per un materiale poroso può essere riscritto come:

$$
\Phi(s_{ij}, \sigma_{ij}, f, \sigma_y) = \frac{3}{2} \frac{s_{ij} \cdot s_{ij}}{\sigma_{eq}} + 2q_1 f^* \cosh \left( \frac{\sigma_{kk}}{2\sigma_{eq}} \right) - 1 - (q_2 f^*)^2 = 0 \tag{3.1}
$$

dove $s_{ij}$ e $\sigma_{kk}$ sono il deviatore e la traccia del tensore delle tensioni; $q_1$ e $q_2$ sono i due coefficienti di Gurson mentre $f^*$ è il valore attuale della porosità.

La superficie di smarimento individuata dal potenziale di eq. (3.1), nel caso di porosità nulla si riduce al criterio di Von Mises. Il modello di Gurson tuttavia non tiene conto del fatto che durante il fenomeno di crescita l’interazione tra i microvuoti aumenta con il diminuire della reciproca distanza. Tvergaard 15 e Needleman 16 hanno proposto la seguente legge per l’evoluzione della porosità:

$$
f^* = \begin{cases} 
    f & f \leq f_c \\
    f_c + K(f - f_c) & f > f_c 
\end{cases}
$$

dove per $K$ si ha:

$$
K = \frac{f_u - f_c}{f_r - f_c}
$$

dove $f_c$ è il valore critico della porosità in corrispondenza del quale si ha la coalescenza dei microvuoti e la funzione di accumulo della porosità cambia pendenza, $f_u$ è il valore per cui il materiale perde ogni capacità di sostenere i carichi ed il valore della rigidezza locale cade improvvisamente a zero; $f_r$ è il valore della porosità in corrispondenza della frattura. Normalmente si assume per i coefficienti di Gurson,

$$
q_1 = q_2 = 1.5
$$
mentre $f_e = 1/q_1$. Il coefficiente $K$ è legato dal punto di vista fisico alla pendenza del curva $\sigma$-e nella regione immediatamente precedente alla frattura. Pertanto, fissando arbitrariamente un valore di $K$ e di $f_e$ tutti i parametri risultano essere determinati.

Le relazioni di evoluzione della porosità, detta anche frazione volumetrica di vuoti, sono le seguenti:

$$\dot{f} = \dot{f}_{\text{growth}} + \dot{f}_{\text{nucleation}}$$

dove:

$$\dot{f}_{\text{growth}} = (1 - f) \dot{e}^P_{kk}$$

$$\dot{f}_{\text{nucleation}} = A \dot{\varepsilon}_{eq} + \frac{B}{3} \dot{\sigma}_{kk}$$

Nel caso specifico il modello di Gurson è stato utilizzato per tentare di descrivere la frattura duttile nell'acciaio 22NiMoCr37. Per questo scopo il Fraunhofer Institut ha messo a disposizione i risultati relativi a due prove di trazione condotte su provini cilindrici standard.

L'obiettivo dello studio è quello di identificare il valore di $f_e$ per questo tipo di acciaio. Il calcolo è stato realizzato, per motivi di semplicità, senza tener conto del processo di nucleazione. E stato realizzato un modello agli elementi finiti simulando un solo quarto della geometria, fig. 2A. Per localizzare il fenomeno del necking, la sezione minima è stata ridotta rispetto a quella nominale di 0.005D0. Anche in questo caso è stato utilizzato un elemento bilineare isoparametrico ad 8 nodi, sottointegrato mentre per il calcolo elasto-plastico si è fatto uso di un approccio lagrangiano con teoria della plastichità finita. Il modello è costituito da 360 elementi e 1176 nodi con due gradi di libertà per ogni nodo. Il primo obiettivo è stato quello di controllare la risposta macroscopica del modello confrontando la curva $P-\Delta F$ ottenuta numericamente con le curve sperimentali. Tale confronto, fig. 8, mostra un ottimo accordo tra il comportamento previsto ed i dati sperimentali. La ripetibilità delle curve sperimentali è buona anche se si osserva una significativa differenza in corrispondenza della regione prossima alla rottura. Un'ulteriore confronto è stato fatto tra le curve carico-elongazione numeriche e sperimentali. In questo caso, fig.9, l'accordo è meno buono anche se le stesse curve sperimentali non presentano un'ottima ripetibilità.

L'identificazione dei parametri necessari per il modello di Gurson è stata fatta utilizzando il codice agli elementi finiti MARC (rel. K5) nel quale questo modello di danneggiamento è già disponibile in termini accoppiati. L'accoppiamento sta nel fatto che il codice, oltre ad utilizzare per il materiale un criterio di plasticità modificato secondo il modello di Gurson-Tvergaard-Needleman, consente di ridurre automaticamente la rigidezza dell'elemento ad un valore prossimo a zero una volta che la porosità raggiunge il valore di frattura. In questo modo è possibile seguire, attraverso una procedura numerica sufficientemente stabile, l'intero processo di frattura.

Per avere un'idea dei valori di porosità caratteristici del fenomeno è stata fatta una prima analisi con un'elevato valore della $f_e$ in modo da non indurre nel calcolo alcun processo di accelerazione dovuto alla coalescenza dei microvuoti. Successivamente, il calcolo è stato ripetuto diverse volte con differenti scelte di $f_e$ in modo da identificare correttamente il valore per il quale si ha il
brusco cambio di pendenza nella curva P-ΔΦ. In fig. 10 sono riportati a confronto le differenti curve ottenute facendo variare il valore di f_c da 0.008 a 0.012. In questo processo di calcolo il valore di K è stato mantenuto costante: le curve di fig. 10 hanno tutte la medesima pendenza nella fase di rottura. Dato che le due prove di trazione non presentano una buona ripetibilità, il valore di f_c cambia a seconda della prova che si vuole riprodurre.

Tutte le curve FEM di fig. 10 sono state ottenute per un valore di K=4. La pendenza della curva nella fase di rottura risulta essere più ripida. Pertanto, una volta identificato il valore di f_c, il calcolo è stato ripetuto facendo variare il valore di K. Questa procedura di calcolo ha sottolineato l'esistenza di un legame non esplicito tra K e f_c. Infatti se si aumenta il valore di K, la posizione del punto in cui avviene la variazione di pendenza si modifica, arretrando sui valori più bassi. Un valore di K più alto significa una maggiore velocità di accumulo della porosità ovvero un collasso più rapido. Pertanto è necessario ripetere il calcolo nuovamente facendo variare contemporaneamente sia K sia f_c.

Dal punto di vista numerico la scelta di K presenta un limite intrinseco in quanto un K molto elevato associato ad f_c piccolo, implica un collasso contemporaneo di molti punti di Gauss con conseguente instabilità del calcolo. In tabella 3 sono riassunti i valori di f_c che permettono di riprodurre i dati sperimentali.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>K=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.19</td>
<td>0.01</td>
</tr>
<tr>
<td>33.20</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*Tabella 3 - Valori della porosità critica.*

In fig. 11 sono infine riportati a confronto due differenti curve di trazione FEM ottenute con diversi valori di K. In fig. 12 viene infine riportato il confronto tra le curve di trazione ottenute numericamente e le rispettive curve sperimentali.

**4. Conclusioni**

In questo lavoro sono state presentate e discussi alcune procedure di identificazione dei parametri necessari per l'applicazione di due modelli di approccio locale alla frattura. L'applicabilità del modello di Mudry per la frattura fragile richiede una fase di calcolo numericamente sperimenterale piuttosto pesante ed impegnativa in cui l'esperienza dell'operatore risulta essere molto importante. Tuttavia una volta che la procedura è stata sviluppata, attraverso la scrittura di un'opportuna codice di post-processamento dei dati, l'applicabilità ad altri materiali risulta essere praticamente immediata. E' interessante notare come nel caso specifico dell'acciaio 22NiMoCr37 il valore dell'esponente di Weibull è sensibilmente inferiore al valore suggerito in letteratura. Allo stesso modo la tensione critica di clivaggio trovata risulta essere di almeno 1/3 inferiore ai valori proposti in letteratura per acciai simili, (Pineau ed Amar, Pelisier-Tanon ed alt. 17). Per quanto riguarda la frattura duttile, l'ostacolo più grande che si incontra nell'impiego dei modelli accoppiati è rappresentato dalle difficoltà numeriche relative alla riscrittura di un codice FEM in grado di operare con questi modelli. In maniera più semplice è possibile scrivere dei
programmi di post-analisi (Bonora ed alt. 18) in grado di fornire, a partire dalla storia delle deformazioni ottenute con un codice tradizionale, l'evoluzione della variabile di danno senza però consentire di valutare gli effetti di un'assegnato stato di danno sulla risposta globale di un componente.

In ogni caso la possibilità offerta da questi modelli di seguire e prevedere la risposta di un materiale anche in severe condizioni di danneggiamento, costituisce un utile incentivo a continuare l'indagine scientifica in questa direzione.

RINGRAZIAMENTI - Gli autori intendono ringraziare il Fraunhofer Institut e l'ESIS per la collaborazione dimostrata nello sviluppo della prima fase del 2º Round Robin sull'Appproccio Locale. Il presente lavoro è stato reso possibile grazie i fondi MURST e CNR.

5. Bibliografia


Fig. 1 A: Modello FEM (1/4) barotto cilindrico di trazione.

Fig. 1 B: Modello FEM (1/4) barotto cilindrico con intaglio circonferenziale (RNTB).

Fig. 3 - Confronto tra le curve P- numerica e sperimentali.
Fig. 4 - Andamento della tensione di Weibull in funzione del carico applicato.

Fig. 5 - Andamento della tensione di Weibull in funzione della riduzione della sezione minima.
Fig. 6 - Confronto tra le probabilità relative sperimentali calcolate con $m=16.78$ e la retta interpolante ($m$ riuscita: 16.68)

Fig. 7 - Andamento della probabilità di frattura in funzione della tensione di Weibull per l'acciaio 22NiMoCr33.
Fig. 8 - Confronto tra le curve di trazione sperimentali e la risposta FEM per la frattura duttile.

Fig. 9 - Confronto tra le curve relative all'elongazioni sperimentali e FEM.
Fig. 10 - Andamenti delle curve di trazione per differenti valori di $f_c$.

Fig. 11 - Curve di trazione ottenute con differenti valori del coefficiente $K$.  

59
Fig. 12A - Curve di trazione modificate sulla base del modello di Gurson.

Fig. 12B - Curve di trazione modificate sulla base del modello di Gurson.