
On the Generation of a Loading History with Zero Mean for 
Structures Subjected to Multiaxial Variable Stresses  
 
 
Bilge Kocer 1, Yigit Yazicioglu 2, Serkan Dag 2 
 

1 Defense Industries Research and Development Institute, TUBITAK-SAGE, P.K. 16, 
Mamak, Ankara 06261, Turkey; E-mail: bilge.kocer@sage.tubitak.gov.tr  
2 Department of Mechanical Engineering, Middle East Technical University, Ankara 
06531, Turkey; E-mails: yigit@metu.edu.tr; sdag@metu.edu.tr  
 
 
ABSTRACT. When a component is subjected to an excitation that has a nonzero mean, 
this mean value could have a noteworthy effect on the stresses and thus on the fatigue 
life of the component. In fatigue calculations, mean stress effect can be taken into 
consideration rather easily but experimental verification is troublesome since with 
traditional testing equipment like vibration shakers, any mean value of an acceleration 
excitation other than 1g in the direction of gravity is difficult to simulate. In this study, a 
method is proposed to create a modified input loading history with a zero mean which 
causes fatigue damage approximately equivalent to that created by input loading with a 
nonzero mean. For this purpose, a mathematical procedure is developed to apply three 
dimensional mean stress correction to the output stress power spectral density data. A 
modified input acceleration power spectral density is generated by means of transfer 
functions calculated via frequency response analysis. In the implementation of the 
developed method, a plate subjected to base excitation is considered. The base 
excitation leads to a fully three dimensional multiaxial state of stress in the plate. It is 
shown that the developed method is useful in creating a modified input acceleration 
data with a zero mean that can simulate damage for a selected point in the structure 
under consideration. Equivalent input loading obtained by means of the aforementioned 
method is convenient for experimental applications. Besides being a time saving 
method, it is suitable to be implemented for any type of loading. 
 
 
INTRODUCTION  
 
Lifetime prediction assessment for components under random loading is an important 
concern in engineering. In fatigue calculation algorithms, a cycle counting method, 
commonly used ones are rainflow, peak, level crossing and range counting procedures 
according to [1], is implemented to identify loading cycle occurrences, amplitudes and 
mean values while a damage accumulation theory, mainly Palmgren–Miner rule, is 
employed to determine accumulated damage.  

Mean value of the loading is an essential issue since it results in mean stress on the 
structure which causes a decrease in fatigue life. Several mean stress and strain 
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correction procedures are introduced in the literature. The effectiveness of damage 
parameters to determine the mean stress effect on fatigue life of test specimens are 
evaluated considering the results of strain-controlled fatigue tests with and without 
mean strain and mean stress [2]. Gerber and Goodman formulations are among the most 
widely used mean stress correction procedures. Time domain fatigue life calculation 
techniques directly utilize mean stress correction methods to amplify the stress ranges to 
take the mean stress effect into account. In frequency domain fatigue life calculation 
approaches, when the power spectral density of the stress is determined, only the 
variable stress part is considered, however, the constant mean component is ignored [3].  

In this study, the mean stress correction is accomplished on stress power spectral 
density to be able to include the loading’s bias effect. Goodman correction technique is 
preferred to Gerber since it is reported in [4] that Gerber relationship generally gives 
higher fatigue lives compared to the experimental results. Dirlik method is chosen for 
application of vibration fatigue approach. According to [5], Dirlik approach leads to 
better results in comparison to the corresponding time domain and frequency response 
methods. The main goal of this study is to create an input power spectral density of the 
loading with a zero mean which causes fatigue damage approximately equivalent to that 
created by input loading with a nonzero mean. This will enable to perform fatigue tests 
conservatively. Therefore, a mathematical approach is developed to modify the output 
von Mises stress power spectral density to take the multiaxial stresses into account at 
the point of consideration and to provide the needed input loading power spectral 
density. The corrected input with zero mean value enables experimental verification 
while the mean value of the input cannot be applied in standard vibration tests. As a 
case study, an aluminum plate fixed and excited at one end is used for the 
implementation which is shown schematically in Figure 1. 

 

 
 

Figure 1. Plate Subjected to Base Excitation 

 
 
 
THEORY 
 
In this section, the mathematical approach proposed to calculate equivalent zero mean 
loading for a structure subjected to random loading with nonzero mean is described. 
The developed method is based on the frequency domain fatigue calculation techniques. 
Vibration-Fatigue calculations and its mathematical background is not explained in 

Fixed end of the plate 
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detail since it is out of scope of this work, but the interested readers are referred to the 
recent publications by Sherratt et al. [6] for preliminary information on the current 
methods of this concept and Sherratt [7] for a standard vibration-fatigue approach. 

In vibration fatigue calculations, the frequency content of the stresses is accounted 
for by a probability density function of rainflow stress ranges, p(S). The fatigue 
calculations with this approach are performed by utilizing (1) given below in which T is 
the fatigue life in seconds and E[D] is expected value of damage that is set to unity.  
 

(1) 
 

 
In (1), n(S) is the number of cycles at the particular stress level S , N(S) is the total 

number of cycles at the stress level S that cause failure according to Woehler curve, 
E[P] is the expected number of peaks per second and C and b stand for material 
constant and Basquin exponent respectively. 

To calculate the probability density function of rainflow stress ranges, several 
different empirical solutions are proposed by researchers like Wirsching et al (1990), 
Chaudhury and Dover (1885), Tunna (1986), Hancock Kam and Dover (1988), and 
Kam and Dover (1988) [8]. A survey by Bishop et al. [9] can be referred to for detailed 
investigation of some of the methods developed. In the present study, the broadband 
formulation (2) developed by Dirlik [10], which is accepted widely, is employed to 
assess the stress range probability density function. 
 
 
  

(2) 
 
 

In (2), m0 is the 0th order spectral moment of the output PSD; whereas the other 
parameters, Zi, D1, D2, D3, R and Q are formulated as stated in detail in [11]. 

As it is clear from the formulation carried out to calculate (2), p(S) is calculated 
through utilization of the stress amplitude, S, and spectral moments up to forth degree, 
m0, m1, m2 and m4. These spectral moments are calculated from the response stress PSD, 
Gr(f), which is given in (3) below, where H(f) and H*(f) stand for the transfer function 
between Gr(f) and Gi(f), and its complex conjugate respectively. 
 

(3) 
 

Transfer function can be obtained via frequency response analysis of the structure 
where for each frequency a different transfer function matrix is calculated. 

To compute a zero mean input acceleration PSD, which is mentioned as the modified 
acceleration input PSD (Gim(f)) here, first of all, mean stress correction is performed on 
the von Mises stress output PSD, Gr(f). Goodman’s mean stress correction shown in 
Equation (4) below is used to obtain the modified output stress PSD, Grm(f).  
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(4) 
 
 

 
Note that Goodman’s formula is widely used for mean stress correction for stress 

amplitude modification [12], but in this study it is utilized to correct PSD stress output 
data. If the PSD is split into equal strips, the area of each strip can be utilized to obtain 
an equivalent sine wave. The amplitude of each equivalent sine wave is equal to the 
square root of the area times 2 . This is because of the fact that the root mean square of 
a sine wave is equal to its amplitude divided by 2 , and the root mean square of each 
strip in the PSD is equal to the square root of its area [13]. In this study, the stress PSD 
value, Gr(f), is multiplied by the corresponding frequency resolution and the square root 
of it is taken and multiplied with 2  to obtain the alternating stress amplitude, Sa, for 
each frequency. Then, mean stress correction is performed with (4) to calculate the 
modified alternating stress amplitude, Sar. Afterwards, the calculations are carried out in 
the reverse direction to reach corrected output stress PSD, Grm(f).  

Theoretically, there should be an input acceleration PSD that will result in the 
modified output stress PSD, Grm(f), when applied to the structure since the transfer 
function of the structure remains the same regardless of input type. This physical 
relation can be represented by the following equation which is rewritten from (3) for a 
different input-output couple. 
 

(5) 
 

To obtain Gim(f), (5) is re-ordered which results in (6): 
 

(6) 
 

The variables in equation (6) are vectors, which in turn makes regular matrix 
inversion impossible. Therefore, the inverse calculations in equation (6) are carried out 
by using pseudo-inverse. A corrected input loading with zero mean but modified 
alternating stress, which creates fatigue damage equivalent to the damage caused by the 
processed loading with nonzero mean, is extracted by means of this technique. It should 
be noted that, this approach is focusing to find a modified loading that simulates 
damage for a selected point on the structure, which in turn will be acceptable in the 
vicinity of that point. 

 
 

CASE STUDY 
 
In this section, the proposed correction method is demonstrated on an application 
analysed according to the method presented in the Theory section. 

The plate shown in Figure 1 is excited from its cantilevered base with stationary, 
Gaussian random 10 second acceleration time history with a mean value other than zero 
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as shown in Figure 2. The input loading consists of harmonics that possess different 
amplitudes with broadband frequency range, up to 2000 Hz, involving the first 20 of the 
natural frequencies of the specimen. The deformation patterns include bending and 
torsional mode shapes that induce a multiaxial stress state in the structure. 
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Figure 2. Input Acceleration Loading: a) Time History; b) PSD 

 
MSC Patran/Nastran and MSC Fatigue software tools are used for finite element 

modeling and analysis. Frequency response analysis is carried out to obtain transfer 
functions between input acceleration and output von Mises stresses needed for fatigue 
calculations. The first analysis is conducted using Dirlik’s method for determination of 
probability density function of rainflow stress ranges stated in [7] without mean stress 
correction. Then, the second analysis is conducted with Goodman mean stress 
correction proposed by MSC Fatigue. Afterwards, mean stress correction technique 
mentioned in Section 2 is performed using output von Mises stress PSD taken from the 
first analysis. Von Mises stress caused by mean acceleration of the input loading at the 
specific point whose life is the least is used for the mean stress correction.  Specified 
point is actually close to the cantilever support for the given case study where fatigue 
failure is expected to occur.  Mean von Mises stress at the desired vicinity is found via 
linear static analysis with an inertial loading of magnitude equal to the mean value of 
the input acceleration loading shown in Figure 2. After calculating modified output 
stress PSD as described in Section 2, corrected input loading PSD with amplified 
amplitudes (Figure 3) is determined via (6). Finally, fatigue analysis is performed using 
modified input loading PSD for comparison. 

a) b) 
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Figure 3. Modified Input Loading and Original Input Loading 

 
Finite element analysis results regarding fatigue life are presented in Figure 4 and 

compared for the points in the vicinity of the point of failure (nodes shown in Figure 5) 
in Table 1. 

 

  
 

  
 

Figure 4. Fatigue Lives for the Plate (in seconds): a) without Mean Stress Correction;  

b) with Goodman Mean Stress Correction; c) with Proposed Mean Stress Correction 

 

a) b) 
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Figure 5. Finite Element Model of Displaying the Plate-Node Numbers 

 
 

Table 1. Comparisons of Fatigue Lives 

 

Life (s) 
Analysis 1     
(w/o mean 
correction) 

Analysis 2        
(w/ Goodman 

mean correction) 

Analysis 3          
(w proposed mean 

correction) 
Node 511 1.696E7 1.671E7 1.264E7 
Node 35 1.698E7 1.672E7 1.265E7 
Node 512 1.7E7 1.675E7 1.267E7 
Node 36 1.7E7 1.674E7 1.266E7 
Node 510 1.716E7 1.69E7 1.278E7 
Node 34 1.721E7 1.695E7 1.282E7 

 
 
CONCLUSIONS 
 
This paper presents a new mathematical approach that applies Goodman mean stress 
correction to power spectral density of von Mises stress to obtain an equivalent input 
power spectral density of the loading with a zero mean which leads to damage 
approximately equivalent to that caused by an input with a nonzero mean. 

A case study is presented to show the implementation of the proposed method. A 
plate exposed to base excitation is examined and fatigue life is calculated for the 
excitation shown in Figure 2 without mean stress correction, by considering Goodman 
mean stress correction (in MSC Fatigue) and also by considering the loading generated 
by means of the proposed technique. Developed method gives a more conservative 
fatigue life compared to that obtained by the Goodman mean stress correction. 
Therefore, the input loading obtained by means of the aforementioned method is 
concluded to be safe, practical and convenient for experimental applications. 
 

Fixed end of the plate 
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