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ABSTRACT. This paper investigates the formulation of non-local multiaxial high-cycle 

fatigue models based on the Theory of Critical Distances. In the present framework, the 

critical distance is identified in a manner consistent with the multiaxial fatigue model 

under consideration – which may imply critical distances not equal to the widely used 

value given by half of the El Haddad’s intrinsic crack length. The methodology is 

applied to well-known fatigue models, namely the ones proposed by Susmel & Lazzarin 

(Modified Wöhler Curve Method), Crossland and Dang Van, and compared with 

available experimental data obtained from small and/or sharp notches under 

proportional loading. The Modified Wöhler Curve Method showed the best agreement 

with the experimental data. 

 

 

INTRODUCTION   
 

The Theory of Critical Distances (TCD) [1,2] has become a useful engineering 

approach to the problem of estimating the fatigue strength in the presence of high stress 

gradients. Among its important applications, we can mention the fatigue analysis of 

sharp and small notches [3-5] as well as mechanical contacts [6].  

Fatigue models based on the TCD state that failure by high-cycle fatigue will not 

occur before a specified number of loading cycles if 
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where ∆  denotes the elastic stress history at a material point, F ( )⋅  is a function written 
in terms of equivalent stress measures and V is a material volume. The shape of the 

material volume is chosen a priori and its size is assumed to be a material parameter. 

Roughly speaking, Eq. 1 expresses that the driven forces which damage the material 

should be a non-local measure evaluated in a finite material volume, instead of being 

computed at a dimensionless point (hot-spot method).  

The simplest approximation for Eq. 1, called The Point Method, may be written as 
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where 
c

L( )∆  is the elastic stress history at a certain distance 
c
L  from the hot-spot. For 

simplicity and widespread use in applications, we shall only deal with The Point 

Method throughout the paper. 

The crucial aspect of the TCD regards the identification of the material parameter 

c
L .  D. Taylor [1] argued that since Eq. (2) holds for any elastic stress distribution (i.e. 

from uniform distributions to ones with high stress gradients), then it is possible to find 

this parameter by matching the estimated threshold stress intensity factor range with the 

one observed experimentally. Within this setting and writing the fatigue model as a 

function of the maximum principal stress, one can shown that the critical distance is 

given by  
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The parameter L , called El Haddad’s intrinsic crack length, depends on the threshold 

stress intensity factor range, 
I th

K
,

∆ , and the fully reversed axial fatigue strength range, 

1
σ −∆ , at a high number of loading cycles (conventionally, greater than 610  cycles). 

 

Although the TCD has been successful in predicting the fatigue strength of sharply 

notched specimens subjected to uniaxial loading [3], its extension to complex loadings 

is not yet consolidated [7]. In this paper, we investigate the formulation of non-local 

multiaxial high-cycle fatigue models based on The Point Method. It is proposed that the 

critical distance should not always be given by half of El Haddad’s intrinsic crack 

length. Instead, its value should depend on the multiaxial fatigue model under 

consideration. 

 

 

NON-LOCAL MULTIAXIAL FATIGUE MODELS BASED ON THE THEORY 

OF CRITICAL DISTANCES 
 

Non-local formulation of the Modified Wöhler Curve Method 

The application of The Modified Wöhler Curve Method [8] into Eq. 2 yields 
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where 
a
τ  is the shear stress amplitude on the material plane experiencing the maximum 

shear stress amplitude, 
n max,

σ  is the maximum normal stress in this plane, and α , β  

and 
c
L  are material parameters. The shear stress amplitude on a material plane is 
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defined as the radius of the minimum circumference enclosing the path described by the 

shear stress vectors.  

 

Identification of material parameters 

We shall start with the identification of the material parameter 
c
L . Let’s consider  a 

fatigue specimen with a long crack subjected to a fully reversed Mode I stress intensity 

factor given by  
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where 
I

K∆  is the stress intensity factor range. The elastic stress history at a distance 
c
L  

from the crack tip (assuming a plane stress state) is given by 
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This is a proportional stress history so that the evaluation of the stress measures in Eq. 4 

are easily computed as 
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The substitution of these expressions into Eq. 4 provides that the estimated fatigue 

threshold range is 
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Finally, to identify 
c
L , we impose the restriction  
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which implies that 

 
2

1

32

I th

c

K
L

,
.

π β α

 ∆
=   − 

                                                (10) 

 

The identification of the material parameters α  and β  can be accomplished with 
two independent fatigue strengths obtained from plain specimens. Notice that when the 

fully reversed axial and torsional fatigue tests are considered, then we have 
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1
0 5.β α σ −− =  and 

1
β τ −= . Therefore, in this particular case, the critical distance 

expressed by Eq. 3 is recovered. However, this may not be the case if different fatigue 

tests are selected for material identification. 

 

 

Non-local formulation of Crossland and Dang Van fatigue models 

In this section we present the critical distances obtained when the material identification 

procedure outlined above is applied to the multiaxial fatigue models proposed by 

Crossland [9] and Dang Van [10,11]. For a complete description of the identification 

procedure the reader should consult reference [12]. 

A non-local format for Crossland’s fatigue model is written as 
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where ( ) ( )dev1 2 rmb
a
: /τ = ∆  is the shear stress amplitude defined as the radius of the 

minimum ball enclosing the deviatoric stresses (multiplied by 1 2/ ), 
h,max

σ  is the 

maximum value of the hydrostatic stresses and α , β  and 
c
L  are material parameters. 

The critical distance which provides perfect agreement between this model and the 

experimental fatigue threshold range is given by 
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If α  and β  are obtained from axial and torsional fatigue tests under fully reversed 
loading, then this expression becomes 
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where 
1 1

r : τ σ− −= . 

We now present the following non-local format for Dang Van’s fatigue model: 

 

{ }max 0DV c T h
t

F L( ( )) (S A) ,σ ασ β∆ = − + − ≤                                    (14) 

 

where 
T

σ  denotes Tresca’s equivalent stress, S  is the deviatoric stress, dev:= cmb( )A ∆  

is the center of the minimum ball enclosing the deviatoric stresses, 
h

σ  is the hydrostatic 
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stress and α , β  and 
c
L  are material parameters. The identification of the critical 

distance using the fatigue threshold range yields 
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If α  and β  are obtained from axial and torsional fatigue tests under fully reversed 
loading, then this expression becomes 
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ASSESSMENT OF THE MODELS 
 

The non-local multiaxial fatigue models were assessed considering fatigue strengths 

obtained from notched and cracked specimens. The notched specimens were as follows: 

  

1. Five double edge V-notched plates made of mild steel 0.22%C [13,14];  

2. Ten plates with circular holes made of SAE 1045 steel [15]; 

3. Seven circumferentially V-notched bars made of mild steel 0.15%C [14]; 

4. Six bars with circumferential semi-circular notches made of 2.25Cr-1Mo steel [16]. 

 

The fatigue strengths for the data in items 1, 2 and 4 were evaluated at 10 millions 

cycles, while the number of cycles to failure for the data in item 3 was not reported. Fig. 

1 shows the geometry of the notched specimens. Details about the experimental data can 

be found in reference [12]. 

The following error indexes measure the difference between theoretical estimations 

and experimental data: 
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where model

a thp ,  and a thp ,  are the theoretical and experimental fatigue strengths relative to 

the gross area of notched specimens, while model

I thK ,∆  and I thK ,∆  denote the theoretical 
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and experimental threshold stress intensity factor ranges. Notice that 0I =  means a 

perfect agreement between theory and experiment.                                             

In order to identify the material parameters α , β  and 
c
L , a best fitting strategy was 

considered. For each set of fatigue tests (obtained from plain, notched and cracked 

specimens made from a given material) the parameters were chosen so as to minimize 

the sum of the squared error index of each test. 

 

Table 1 presents the basic statistics of the error indexes for each data set. The results 

show that for notched plates the estimations of the non-local fatigue models compared 

well with the experimental data. On the other hand, the Modified Wöhler Curve Method 

provided better estimations than the other models for notched cylindrical bars. This 

conclusion is illustrated in Fig. 2, where the estimations of the non-local multiaxial 

fatigue models are compared with the experimental data obtained from V-notched bars. 

 

 

CONCLUDING REMARKS 
 

A framework for the estimation of multiaxial fatigue strength, based on the Theory of 

Critical Distances, was investigated in this work. The key feature of the approach is that 

the critical distance is identified in a manner consistent with the multiaxial fatigue 

model under consideration. Among the multiaxial fatigue models considered in this 

work, the Modified Wöhler Curve Method showed the best estimations. Aiming at a 

further development of the proposed approach, one should investigate situations 

involving non-proportional multiaxial loading and/or notches with a more complex 

geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Specimens geometry. (a) V-notched plate, (b) plate with circular hole, (c) 

circumferentially V-notched bar and (d) circumferentially semi-circular notched bar.  
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Table 1. Statistics of the error indexes for each data set. 

 

 Mean (%) 

Standard  

deviation 

(%) 

Maximum 

deviation 

(%) 

Sum of 

squared 

indexes 

Plates with V-notches 
Crossland 0.8 4.1 5.3 0.012 

Dang Van -0.2 3.9 6.5 0.011 

Susmel & Lazzarin -1.4 6.9 11.1 0.034 

     
Plates with central hole 
Crossland -1.4 9.9 24.0 0.14 

Dang-Van -2.3 10.4 22.5 0.16 

Susmel & Lazzarin -1.6 12.3 25.8 0.22 

     
Bars with V-notches 
Crossland 15.1 14.7 31.8 0.401 

Dang Van 6.7 9.7 15.7 0.125 

Susmel & Lazzarin 0.2 5.1 10.0 0.024 

     
Bars with semi-circular 

Notches 
Crossland 5.1 15.2 34.4 0.206 

Dang-Van 2.4 13.4 27.9 0.148 

Susmel & Lazzarin -0.8 7.5 16.5 0.046 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison between estimations of non-local multiaxial fatigue models and 

experimental data obtained from V-notched bars.  
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