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ABSTRACT. In this theoretical study an integral approach using shear stress intensity 

hypothesis (SIH) is evaluated on notched bars subjected to proportional as well as non-

proportional multiaxial loading, i.e. on shafts. The calculation of SIH is successfully 

implemented into a finite element analysis and automated within commercial FE 

software Abaqus. In addition, approved fatigue directives (DIN 743 and FKM-

Guideline) as well as critical plane approach using Smith-Watson-Topper (SWT) and 

Fatemi-Socie (FS) parameters are applied to estimate the fatigue strength of diverse 

notches and loading combinations and compared with SIH results. Observed differences 

among the approaches are discussed and consequently limitations of particular 

parameters can be enunciated. 

 

 

INTRODUCTION 

 

Shafts and axles are typical power train components with high human and industrial 

safety importance. Thus reliable design and calculation methods are essential for a 

secure service of numerous engineering systems. In consequence of service loading 

(torque and bending moments) shafts are subjected to multiaxial stress state with a 

certain grade of non-proportionality. Furthermore, press and shrink fits as well as 

bearing seats have an essential effect on the structural design of the bar components 

resulting in shoulders, undercuts and other notches. These geometric flaws affect and 

contribute also to the existing stress state multiaxiality. 

The design and fatigue calculation for shafts and axles is established in German 

standard DIN 743 [1]. This work is based on a nominal stress approach and focused on 

typical shaft geometries and notches as well as loadings and materials, i.e. steels. For a 

fatigue life assessment on more complex volumetric parts FKM-Guideline “Analytical 

stress assessment” [2] was developed as a standard for industrial application. Nominal 

as well as local stress approaches are included and for fatigue assessment under 

synchronous proportional loading. In case of high multiaxiality of the stress tensor 

components numerous fatigue theories can be applied [3]. The most of suggested 

fatigue parameters are based upon stresses, strains, stress invariants and strain energy 

density respectively. Very common is the use of the critical plane approach, which uses 

to be implemented also in commercial fatigue codes. Here, the fatigue failure is 
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predicted on one certain critical plane. More accurate especially in case of high non-

proportionality of the applied loading is the integral approach [4]. This theory considers 

dynamic stress components in all intersection planes of a volume material element. 

Besides of earlier presented accuracy of the particular fatigue criterions this theoretical 

study should demonstrate the comparability of the standardised fatigue calculation 

algorithms with the contemporary fatigue theories. Typical shaft geometries with 

notches under diverse constant amplitude loadings were used as demonstrators in this 

work. 

 

 

FATIGUE CALCULATION STANDARDS 

 

Nominal Stress Method 

The nominal stress method is represented by the German standard DIN 743 for 

fatigue assessment of shafts and axles. It is valid only for steels (normalised, tempered 

as well as hardened) and considers solely proportional multiaxial loading combinations. 

The safety factor SDIN is calculated using the occurring nominal tensile, bending and 

torque (shear) stress amplitudes σzda, σba, τta and the endurable amplitudes of the 

notched shaft σzdADK, σbADK, τtADK, Eq. 1. These follow from the alternating endurable 

amplitudes of the material σiW (i = zd, b and t) reduced by the construction notch factors 

K and the influence (ψiK) of constant mean stresses σmv, Eq. 2. K1(deff) as well as K2(d) 

are so called size effect factors and depend on the diameter of the shaft or bar stock. 

Besides the both component surface factors KFσ and KV the most important value is the 

fatigue notch factor βσ. This factor is defined as a fatigue limit ratio of smooth and 

notched specimen, but it can be calculated also using the stress concentration factor ασ 

and the geometrical size effects in notch root Eqs. 3. In n the positive effect of stress 

gradient G is considered. The authors of this fatigue standard specify the uncertainty of 

the assessment of maximal 20%. Thus, the minimal safety factor SDIN is 1.2. 

Recommended values for practical use are between 1.5 and 2.5. More detail information 

about the evolution and enhancements of this algorithm can be found in [5]. 
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Local Stress Method 

For more complex component geometry and loading cases the more universal and 

sophisticated FKM-Guideline “Analytical Stress Assessment” is commonly used. 

Besides the nominal stress method the fatigue strength calculation can be performed 

also using local principal stresses derived e.g. from a finite element analysis (FEA). The 

algorithm leads to a present cyclic grade of utilisation aBKσv or safety factor SFKM as 

reciprocal value which bases on the von Mises fatigue criterion, Eq. 4. The stress factors 

sa,p (p = 1, 2 and 3) are computed as ratio of the occurring principal stress amplitudes 

σpa and component fatigue strength multiplied by a total safety factor jges, Eq. 5. The 

minimal value of jges is set analogously with DIN 743 to 1.2. Mean stress factor KAK,σp 

and construction factor KWK,σp reduce the alternating tensile fatigue strength of the 

material σWzd. The formula for the construction notch factor (Eq. 6) is consistent with 

Eqs. 2 and 3 except for the stress concentration (ασ), which is already included in the 

local stress components σpa. The geometrical notch size factor nσp considers similarly 

the stress gradient effect. 
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In general, the algorithm of the FKM-Guideline is valid for steel, cast iron as well as 

aluminium materials and is verified for synchronous loadings. In [6] application and 

evaluation of the local stress approach is presented. 

 

 

CRITICAL PLANE APPROACH 

 

Fatigue strength calculations working with the critical plane theory identify fatigue 

fracture plane orientation (Fig. 1) and quantify the expected fatigue life on the basis of 

transformed stress and strain tensors. Depending on the dominating crack type normal 

or shear stress components are assumed to contribute to the fatigue damage. In general, 

this method is applicable for proportional and non-proportional multiaxial loadings. The 

quality of the fatigue assessment depends essentially on the choice of the correct 

parameter [3]. 
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Figure 1. a) Critical plane approach, b) integral approach, after [7]. 

 

Within the aspired comparison with fatigue standards and the integral approach two 

of the most common parameters representing normal (Eq. 7) and shear (Eq. 8) strain 

dominated fatigue failures [8, 9]. 

 

 aNNSWT ,max, εσ ⋅=  (7) 

 

 













⋅+⋅=

cp

N

FSaN
R

kFS
,

max,

, 1
σ

γ  (8) 

 

 

INTEGRAL APPROACH 

 

The integral approach acts on the assumption that stresses not only on a certain 

critical plane but in all planes contribute to the fatigue damage of the material. Basing 

on this theory Zenner et al. [10] developed shear stress intensity hypothesis (SIH) which 

bases on a root-mean-square of the shear stresses τθϕ, Eq. 9. In this hypothesis the 

influence of mean stress is included using alternating (W) and pulsating (Sch) fatigue 

strength for normal (σ) and shear (τ) stress, Eqs. 10 and 11. Analogous to the industrial 

fatigue standards a safety factor SSIH can be expressed according to Eq. 12. In [11] Liu 

showed a very good agreement of the SIH with experimental result under diverse 

multiaxial loadings. Mean stress effect is also described as shown in [12]. 
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MODEL GEOMETRIES 

 

The model geometry was chosen according to earlier analyses of shrink-fitted 

couplings. The nominal diameter D of the shaft was 40 mm. Three diverse notch 

geometries (shoulder, round groove and relief groove) including two radii modifications 

(Table 1) were selected as representative geometric demonstrators for the fatigue 

assessment. The smaller diameter d of the shaft was always 36 mm. The chosen five 

geometries are explicit included in the DIN 743 standard and so a precise fatigue 

strength calculation without extrapolation can be performed. The different notch radii 

should demonstrate the influence of the geometrical notch size effect, see Eq. 3 and 6. 

 

 

Table 1. Analysed notch geometries. 

 

Name Geometry parameter Drawing 
Shoulder 

S10 

r = 10 mm t = 2 mm 

Shoulder 

S2 

r = 2 mm t = 2 mm 
 

Groove 

R10 

r = 10 mm t = 2 mm 

Groove 

R2 

r = 2 mm t = 2 mm 

 

Relief groove 

DIN 509-E1x0.3 

RG 

r = 0.8 mm t = 2 mm 

D1 = 36.6 mm 

 

 

Figure 2 shows a finite element model of the shaft with applied boundary conditions, 

here in version with shoulder and radius S10. Commercial FE code Abaqus 6.8-2 was 

used for the numerical simulation of the loadings. Solely second order elements 

(C3D20R) were used within the analyses. Linear elastic material behaviour was 

assumed for the steel (E = 210,000, ν = 0.3). 
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Figure 2. Finite element model with applied boundary conditions (S10). 

 

 

APPLIED LOADINGS 

 

The applied multiaxial loadings can be divided in following two categories, Table 2. 

 

Table 2. Analysed multiaxial loadings. 

 

Tension Bending Torque Phase Load 

case 

Geo-

metry F [kN] RF MB [Nm] RB MT [Nm] RT ϕL [°] 

S10 678 678 

S2 531 531 

R10 573 573 

R2 417 417 

LC11 

 

τta/σba = 

0.5 

RG 

- - 

324 

-1 

324 

1 - 

S10 64 971 

S2 51 847 

R10 56 879 

R2 39 687 

LC12 

RG 30 

1 - - 

583 

-1 - 

S10 438 944 

S2 322 820 

R10 356 861 

R2 249 673 

LC13 

RG 

- - 

186 

1 

579 

-1 - 

S10 678 339 

R10 573 286 

LC21 

RG 

- - 

324 

-1 

162 

0 0 

S10 678 339 

R10 573 286 

LC22 

RG 

- - 

324 

-1 

162 

0 90 

S10 678 678 

R10 573 573 

LC23 

RG 

- - 

324 

-1 

324 

-1 0 

S10 678 678 

R10 573 573 

LC24 

RG 

- - 

324 

-1 

324 

-1 90 
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Load cases LC11-13 have only one dynamic stress component and were computed for 

infinite life (N > 5 Mio.) basing on the so called “endurance limit” of the normalised 

steel 1.0503 (C45E) estimated by the shaft standard DIN 743 with the safety factor 

SDIN = 1.2. Loading combinations LC21-24 base on LC11 (typical industrial 

application) and have dynamic torque with reduced moment or phase difference ϕL 

(bending time leading). Here, non-proportional loading conditions were investigated. 

 

 

FATIGUE STRENGTH CALCULATION 

 

As mentioned above the fatigue assessment was performed for steel 1.0503 using 

following material data: Rp = 340 MPa, Rm = 620 MPa, σW = 260 MPa, τW = 170 MPa, 

σSch = 470 MPa, τSch = 323 MPa. The calculation of SWT, FS and SIH was automated 

within the FE-Software using C++ and FORTRAN subroutines. Finally, safety factors 

according to Eqs. 4 and 12 were computed. Both critical plane factors SWT and FS 

were normalised, i.e. related to the mean value obtained from all calculations. The 

results for load cases LC11-13 are shown in Fig. 3. Very good fatigue correlation was 

achieved using FKM algorithm. Critical plane approach was also in accordance with 

DIN standard, especially using FS parameter. The integral approach showed an absolute 

deviation, the mean value of SSIH was about 2.0. An “outlier” value for R10 under LC11 

was observed, which is not coincident with [13]. A possible reason for this behaviour 

could be the missing consideration of geometry notch and stress gradient effects (cp. 

Eqs. 3 and 6) within the integral approach. 

Fig. 4 shows the comparison of integral and critical plane approach for non-

proportional load cases LC21-24. Both fatigue parameter SWT and FS are lightly 

diverging whereas the SIH results to a certain value (approx. 1.7). At the same time the 

applied phase difference seems to be overrated by SWT and FS. Other authors report a 

positive or negligible effect of phase shift within fatigue tests [13, 14]. 
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Figure 3. Comparison of safety factors and normalised fatigue parameters for LC11-13. 
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Figure 4. Comparison of integral and critical plane approach for non-proportional load 

cases LC21-24. 

 

CONCLUSIONS 

 

A general accordance of the integral approach with fatigue standards including a 

light overrating of the calculated fatigue strength was observed. The SIH does not 

consider the geometric notch size effects, thus differences among the notches were 

observed. The studied phase difference effect coincides with other experimental results. 
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