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ABSTRACT. IDD is a completely different concept than any other knowledge for 

fatigue life assessment under any loading including the general case of plane stressing: 

any stress-time functions σx(t), σy(t) and τxy(t), not restricted to be cyclic, neither with 

specified variations, nor two of them zero (uniaxial loading), nor the three of them 

proportional, nor deterministic (but random), and so on. Then, no reversals and cycles 

could be distinguished along the loading path in the σx-σy-τxy coordinate space. Hence, 

any trial to apply again the well-known notions of loading cycles (amplitudes) and 

damages per cycles would conceptually fail. That is why, damage differentials dD are 

introduced to be summed (integrated) instead of finite damages per cycles. Each 

damage differential dD is per loading (stressing) differential ds that replaces the notion 

of loading cycle. There is an implementation of the IDD concept as a concrete IDD 

method and software. The present definitions of ds and dD are rerepresented. Two 

empirical factors of multiaxial loading non-proportionality, fc and fτ, are involved in the 

definition of dD. Methodical clarifications to latest results of IDD verifications under 

multiaxial non-proportional loadings are presented. The very results are reported in 

three other concomitant ICMFF9 papers with participation of coauthors. 

 

 

INTRODUCTION 
 

This paper is aimed at ICMFF9 as a forum for general representation of IDD and 

advancing it as a completely different concept for fatigue life evaluation than the cycle 

counting approach.  

All the other investigations relating to fatigue life are grounded on the notion of 

loading cycle and follow the cycle counting approach. After the treatment of constant- 

amplitude (cyclic) loading in the 19
th

 century, the next step of the researches in the 20
th

 

century was to solve the fatigue life problem under variable-amplitude loading. It was 

all-accepted to decompose a non-cyclic stress-time function/history (shortly named 

“oscillogram”) into a multitude of cycles of different amplitudes (and to build an 

amplitude spectrum). Each cycle is considered to cause fatigue damage 1/N (relative, as 

a part of 1) where N is taken from a corresponding S-N line. While cycles run, damages 

per cycles 1/N are summed. The life ends when the growing sum of the addends 1/N, 
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i.e. the accumulated fatigue damage, reaches 1. This is the Palmgren-Miner rule of 

using the linear damage accumulation hypothesis. The rain-flow procedure of the cycle 

counting approach was all-accepted. Thus, the fatigue life assessment problem seems 

conceptually solved under variable-amplitude uniaxial, or multiaxial but proportional, 

loading: a single oscillogram can be cycle-counted and a single S-N line is used. 

But what to do in the general case of varying plane-stress state (Fig. 1)? 

 

 

(b) Loading path (“trajectory”) 

showing the mutual run (the 
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oscillograms; a variant loading 
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Figure 1. Multiaxial non-proportional and non-cyclic loading (the general case)  

 

This general case of fatigue loading means arbitrary oscillograms σx(t), σy(t) and 

τxy(t): not restricted to be cyclic (with constant amplitude), neither with specified 

variations, nor two of them zero (uniaxial loading), nor the three of them proportional, 

nor deterministic (but random), and so on. This is actually to be expected while 

obtaining unknown oscillograms by means of strain gages attached to a real object (real 

structural component). And, for this case, a concept and a general method for fatigue 

life evaluation should be available. 

Then, no reversals and cycles could be distinguished along the loading path in the σx-

σy-τxy coordinate space, Fig. 1(b). Any trial to apply again the notions of loading cycles 

(amplitudes) and damages per cycles would be logically inconsistent. The oscillograms, 

Fig. 1(a), cannot be separately cycle-counted since their mutuality, Fig. 1(b), is of first 

importance. For example, if two simplest sinusoidal bending and torsion oscillograms 
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run, it is important whether they are in-phase or out-of-phase: they separately remain the 

same but their mutual run differs in the two cases, and hence the life differs, as well. 

After all, no uniform, all-acknowledged and universal approach to the fatigue life 

assessment was established in the general loading case. Instead, a great number of 

inconsistent methods were proposed and a great scatter of research efforts occurred. 

The reason for this failure is considered here to lay in the very inductive way of 

thinking: proceeding from the notion of cycle in the particular case of the simplest 

cyclic loading and trying to generalize under loading which becomes more and more 

complicated. This inductive approach is upside-down from calculus’s point of view. To 

think from the particular to the general, based on finite quantities, was a manner prior to 

the time when Newton, Leibniz et al. introduced the infinitely little quantities, the 

differentials. As a result, all the sciences stormily developed grounded on relations 

between differentials (differential equations) integrated under arbitrary conditions. The 

inductive way was totally replaced by the deductive way starting from differential level 

which is free of integration (boundary) conditions and then integrating under any kind 

of those conditions. This was, in fact, the revolutionary concept of the calculus. 

Upon transferring this concept to the fatigue life assessment, relations on differential 

level are to be revealed and integrated under arbitrary loading conditions. The notion of 

loading cycle is substituted by loading differential ds and the notion of damage per 

cycle 1/N is substituted by damage differential dD. The computed fatigue life results 

from integration of the damage differentials dD up to reaching 1. The life is again 

denoted by N, but now N is a number of repetitions of the representative oscillograms, 

i.e. of the time interval T, Fig. 1(a), until the cumulative damage reaches 1. 

Thus, the loading does not need any preliminary (rain-flow etc.) cycle-counting but 

the very ordinates of the oscillograms automatically and directly run as integration 

(boundary) conditions while integrating. Hence, the oscillograms can be any: the 

concept is universally applicable under any loading. The preliminary factor “kind of 

loading” is not decisive now. The basis of notions is rearranged: cycle, S-N line and 

damage per cycle 1/N are not basic notions now but particular cases of cyclic loading 

integration conditions. 

Hence, IDD does not need to preliminarily know any next wave-form of any of the 

oscillograms in Fig. 1(a). Neither is it necessary to know whether the oscillograms are 

proportional or non-proportional, etc. What is necessary is to have IDD software to just 

sum (integrate) the cumulative damage by adding every next damage differential dD 

regardless of how the next σx(t), σy(t) and τxy(t) ordinates appear.  

The present IDD method needs, though, some preliminary loading information. The 

mean (static) levels σx,m, σy,m and τxy,m, Fig. 1(a), should be known in advance to take 

into account the mean-stress effect (under some discussable conditions). Or, if the 

loading is pulsating, this should also be known preliminarily. 

Mentioning software, the IDD concept needs the contemporary computers and could 

not have been implemented earlier than 30 years ago. But for the last 30 years, as a 

concrete version of implementation of the IDD concept, the present IDD method and 

software have been developed. An IDD site, http://www.freewebs.com/fatigue-life-

integral, has also been created. Any additional detail can be found there. 
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SHORT GENERAL REPRESENTATION OF THE PRESENT IDD METHOD 

 

The Definition of the Invariant Loading Differential ds 

Figure 1(b) shows a running point M describing the trajectory in the σx-σy-τxy coordinate 

space. Between the current (running) time t and the preceding time tp = t – dt, a 

geometrical differential ds is described. It has components dσx, dσy and dτxy that form a 

loading (stressing) differential. However, the problem arises that the stresses σx, σy and 

dτxy, as well as ds and the whole trajectory in Fig. 1(b), are variant of (depend on) the 

orientation of the stress axes x and y. This orientation is not to prescribe: it is a choice of 

one who obtains the oscillograms σx(t), σy(t) and τxy(t). If another one makes a different 

choice, the oscillograms, Fig. 1(a), and the trajectory, Fig. 1(b), will look different: a 

change of the x-y orientation makes σx, σy and τx change according to the well known 

equations of the stress theory. Obviously, the principal cubic volume (infinitesimal 

cuboid) with its invariant principal stresses in the principal directions (principal axes) 

should be used in some way without skipping their rotation. The principal axes are 

denoted as ' and " and, respectively, the principal stresses are σ' and σ" (Fig. 2). 

 

Figure 2. The invariant (ds) differential (b) as a difference between the principal (s) 

state of stress (c) at t and the preceding (sp,0) state (a) at t – dt on the same cuboid 

 

Thus, another idea for an invariant ds differential is applied, as follows. Figure 2(a) 

shows, at the preceding time tp = t – dt, the cuboid (sp,0) which will be principal at the 

current t time (cuboids with stresses are labeled in parentheses). That (immovable) 

cuboid stays at the angle α0 valid for the t time. Since the cuboid is non-principal during 

dt and its state of stress is very close to the principal one, an infinitesimal shear stress 

τxy,0 = –dτ acts on it at tp together with normal stresses σx,0 and σy,0. Figure 2(b) shows 

the appearance of dσ', dσ" and dτ = –τxy,0 on the same cuboid during dt. They compose 

the invariant loading differential (ds) in physical meaning. By adding (ds) to (sp,0), the 

invariant principal state of stress (s) results at t, Fig. 2(c) (no shear stress on the cuboid). 

Respectively, (ds) = (s) – (sp,0) i.e. dσ' = σ' – σx,0, dσ" = σ" – σy,0 and dτ = –τxy,0.  
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The next physical loading differential from t to t + dt will look similar to Fig. 2(b) 

but valid for another immovable cuboid with an infinitesimally different orientation. 

Thus, consecutive invariant loading differentials are considered as lots of immovable 

cuboids at consecutive values of α0 during consecutive time differentials dt. Actually, 

the continuous smooth function α0(t) of rotation of the principal axes is replaced with a 

stepped one. Correspondingly, the rotation of the principal axes is followed in a stepped 

way. Hence, together with dσ' and dσ", Fig. 2(b), the third component dτ = –τxy,0 of (ds) 

also appears. This dτ is owing to, and namely takes into account, the rotation of the 

principal axes during dt. Indeed, if there is no rotation, then dτ = –τxy,0 will be zero. 

The physical invariant loading differential (ds) introduced above, Fig. 2(b), is subject 

to geometrical interpretation as represented next. It is not obligatory (the entire IDD 

theory can be built only based on cuboids with stresses) but is very suggestive. 

It proves (see the IDD site) that the well-known calculation of the principal stresses 

in the stress theory means geometrically the following: the current point M(σx,σy,τxy) of 

the σx-σy-τxy trajectory, Fig. 1(b), goes along an ellipse of transformation (Fig. 3) and 

reaches the σx-σy plane which becomes σ'-σ" plane. Such an ellipse is always parallel to 

the ξ-τxy plane where ξ is the bisector of the quadrants II and IV. The major axis of the 

ellipse is parallel to ξ and the minor axis is parallel to τxy. The ratio between the  axes  is 

 

Figure 3. Transformation of ds element from σx-σy-τxy coordinate space  

into σ'-σ"-dτ coordinate space 
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always 2 . The center of the ellipse is on the bisector η of the quadrants I and III.  

Thus, the determination of σ', σ" and ds at t time means the following. The current 

(new) end of the current variant element ds ≡ dsv in the σx-σy-τxy space is brought to a 

contact with the plane σ'-σ" and becomes the point M'(σ',σ",0) (or M" if exchanging σ' 

and σ"). And the determination of σx,0, σy,0 and τxy,0 at the time t – dt means that the 

preceding end of the transformed element ds, the point Mp,0 (σx,0,σy,0,dτ), is obtained. It 

remains at the distance dτ from the σ'-σ" plane. The so-transformed current variant 

element ds ≡ dsv becomes ds: already invariant of the choice of the stress axes x and y. 

Figure 3 also shows the appearance of the preceding loading differentials. The so-

built sequence of the invariant ds elements is denoted as (S) and is called invariant 

“trajectory” (although it is torn to infinitesimal ds fragments in case dτ ≠ 0). The length 

of (S), i.e. the sum (the integral) of the ds lengths, is S. 

The component (projection) of any invariant element ds onto the σ'-σ" plane is 

labeled as dsxy (Fig. 3). All the dsxy elements form a trajectory (Sxy). Its length Sxy is the 

sum of the dsxy lengths. It turns out that the differentials dsxy can be considered 

connected with the allowance of second-order infinitesimal deviations. Respectively, 

the (Sxy) trajectory, in infinitesimals, can be considered as a smooth curved line (it is a 

straight radial line under proportional loading, in particular). 

Together with the trajectories (S) and (Sxy), it is also to introduce a “trajectory” (Sτ) 

built by the elements dτ. Its length Sτ is the sum of their lengths. So, if the principal axes 

rotate, the elements ds disconnect from each other since their components dτ appear. In 

case the principal axes are immovable, the elements dτ disappear, and the elements ds ≡ 

dsxy are exactly connected. Then they compose a continuous smooth trajectory (S) ≡ 

(Sxy) which entirely lies in the σ'-σ" plane. 

Meanwhile it is to remark that d differentials are represented (substituted) by little ∆ 

finite differences (finite elements): d ∼ ∆. The integration is numerical. 

As a matter of fact, a special three-dimensional coordinate space σ'-σ"-dτ (dτ ∼ ∆τ) 

is introduced in which the third dimension dτ is infinitesimal. And, with the transition 

from the original three dimensions σx-σy-τxy to the new again three dimensions σ'-σ"-dτ, 

no loading information is lost. The transformation provides a reversible one-to-one 

correspondence: the original variant continuous trajectory can be restored from the 

invariant torn one. On the other hand, as the third dimension is infinitesimal, the further 

analysis is practically two-dimensional. This is a significant convenience, also for 

computer visualization: the (Sxy) trajectory will only be displayed on the computer 

screen that represents the σ'-σ" plane, and, on a separate place on the screen, the 

corresponding ∆τ element will be displayed simultaneously with every ∆sxy element. 

In particular, if the original variant trajectory coincides with a transforming ellipse, 

then the elements ∆τ only exist (∆s ≡ ∆τ). They gather all onto one point M'(σ',σ",0) (or 

M"), Fig. 3, and then (S) ≡ (Sτ). This is the case of constant principal stresses in rotating 

principal directions. 

IDD also suggests statistical treatment of random loading (without any amplitudes). 

Two-dimensional density of distribution of the ∆s elements onto the σ'-σ" plane can be 
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done. This subject, relating to random general loading, cannot be included in this paper 

(see the IDD site instead). 

 

Components of the Loading Differential, Basic IDD Types of Loading and Two 

Practical Categories of Non-Proportional Loading 
The invariant geometrical ds differential is “zoomed in” in Fig. 3. It is resolved into a 

radial component dsr, a circumferential component dsc, and a “perpendicular” dτ 

component. Correspondingly, two other “trajectories” are introduced: (Sr) of length Sr as 

a sum of the ∆sr elements, and (Sc) of length Sc as a sum of the ∆sc elements. Trajectory 

ratios tr = Sr/S, tc = Sc/S and tτ = Sτ/S are also introduced. Each of them is ≤ 1. 

Hence, the present IDD method suggests three basic types of loading, as follow. 

First type: proportional loading (including uniaxial stressing and pure shear) with a 

trajectory (S) ≡ (Sr). It is also called r-loading. Radial elements ∆sr exclusively appear 

and the ratio of the principal stresses k = σ"(t)/σ'(t) remains constant. The elements ∆s ≡ 

∆sr lie on a radial line through the coordinate origin in the σ'-σ" plane. Each 

proportional loading has its own k radial line on which the trajectory (S) ≡ (Sr) 

oscillates. All the elements ∆s ≡ ∆sr are connected, all the elements ∆sc and ∆τ are zeros, 

tr = Sr/S is exact 1, and the principal axes are permanently immovable. The trajectory 

ratio tr may also not be exact 1 but close to 1: the loading is nearly proportional. 

Second type: non-proportional loading with immovable principal directions and a 

trajectory (S) ≡ (Sxy) ≡ (Sc) that is an (arc of a central) circumference in the σ'-σ" plane. 

It is also called c-loading. In laboratories, cruciform or thin-wall tubular specimens can 

be exposed to such loading. The pure c-loading has the trajectory ratio tc = Sc/S = 1. 

Otherwise, every non-proportional loading with immovable principal axes relates to the 

second type and may have tc = Sc/S close to 1. 

Third type: non-proportional loading having constant principal stresses in rotating 

principal directions mentioned above. It is also called dτ-loading or ∆τ-loading. 

On the other hand, in fact, there are very rare cases in the engineering practice when 

really all the three oscillograms could be non-proportional. Much more often, two 

“practical” non-proportional loading categories are most important: combined bending 

or axial loading and torsion (with rotating principal axes), and biaxial tension-

compression (with immovable principal axes). The first practical category relates to a 

beam (or a shaft) as the most popular model of a structural component. The second 

category concerns plates and shells. This paper is finally directed to the first practical 

loading category. 

 

The Present Damage Differential with Damage Intensities in It 

Publications on the present IDD method started in 1978. On international level, in 

English, the first publications were [1, 2, 3, 4]. At the latest time, coauthors were also 

involved: [5, 6], and [7, 8, 9] presented together with this paper at ICMFF9.  

The basic equation postulated is dD(s) = R(s)ds at any k = σ"/σ'. The s argument is 

the distance from the current principal point M' of the trajectory to the coordinate origin 
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(Fig. 3). The function R(s), as a derivative R(s) = dD(s)/ds, is damage intensity. D(s) is 

damage function and is the primitive function of the damage intensity. 

Apart from the main argument s at any k, R is influenced by additional arguments: 

 

R = R[s; k; σx,m(t),σy,m(t),τxy,m(t); dsr/ds,dsc/ds,dτ/ds; tr(t),tc(t),tτ(t); …]            (1) 

More details about the additional arguments can be found on the IDD site. Some of 

them are current: they vary with t (by the way, the current cumulative damage is also an 

additional argument which is responsible for non-linear damage accumulation). 

Depending on how many additional arguments will be taken into account and insofar 

thoroughly, different IDD methods can be created, more or less complicated. The 

present IDD method envisages steady (no varying) static (mean) stresses (levels) σx,m, 

σy,m, τxy,m in Eq. 1, as shown in Fig. 1(a). Details about how such static levels are taken 

into account can be found on the IDD site and/or in [9]. How the dependence of R on   

dsr/ds, dsc/ds and dτ/ds is considered is cleared below. The next possible additional 

arguments in Eq. 1 are not taken into account so far. 

If the loading is proportional (r-loading), then R is denoted as Rr and dD becomes 

dDr = Rrdsr. Under pure c-loading and pure dτ-loading, the respective damage 

differentials are dDc = Rcdsc and dDτ = Rτdτ. If the loading is of mixed type, the key 

question arises of how to formulate the damage differential dD per ds? Or: how are dDr, 

dDc and dDτ combined into a general differential dD? The present postulation is:  

 

d d d dr cD D D Dτ
2 2 2

= + +  i.e. d d d dr r c c tD R s R s R τ2 2 2
= ( ) +( ) +( ) .                (2) 

 

If introducing damage intensity ratios fc = Rc/Rr and fτ = Rτ/Rr, then 
 

d d d dr r c cD R s f s fτ τ2 2 2 2 2
= + + .                                             (3)                              

 

Upon integrating all the differentials dD and (according to the linear damage 

accumulation hypothesis) taking the reciprocal of the accumulated damage within T, the 

life is computed: 

 

1

2 2 2 2 2

( )

d d dr r c c

S

N R s f s fτ τ

−
 

= + + 
  
∫ .                                       (4) 

 

In finite ∆ elements, 
1

2 2 2 2 2

( )

r r c c

S

N R s f s fτ τ

−
 

= ∆ + ∆ + ∆ 
 
∑ .                                     (5) 

 

In the above equations, zero Rr, Rc and Rτ areas can be introduced in the σ'-σ" plane 

round the coordinate origin. This is next IDD notion instead of notion of fatigue limits.  
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Equation 5 is what the present IDD software performs in the general loading case. 

The ratios fc = Rc/Rr and fτ = Rτ/Rr are given (selected) by the IDD user (discussed 

below). The intensity Rr is computed for each trajectory’s element ∆s as cleared below. 

 

IDD Procedures and IDD Application  

For setting Rr at any k radial line in the σ'-σ" plane, empirical S-Rr lines should have 

been investigated valid for proportional loadings (both cyclic and non-cyclic). However, 

the fatigue knowledge was not initiated in the IDD way in the 19
th

 century. Instead, the 

empirical S-N lines, easier for realizing, were introduced under cyclic loadings and all 

the fatigue knowledge was grounded on them. As they are integral results under cyclic 

loading integration (boundary) conditions, then vice versa, by differentiation, S-Rr lines 

can be determined from S-N lines. 

Thus, for IDD, input S-N lines are entered under different cyclic proportional (in-

phase) loadings (r-loadings) with different values of the constant k = σ"/σ'. The number 

of the input S-N lines is ≤ 9. Each of them is a double-logarithmic straight S-N line 

described by the well-known equation s
m
N = A = constant (where s ≡ smax, and smax ≡ sa 

for reversed stress cycle). The mostly used input S-N lines are for uniaxial stressing (k = 

0) and pure shear (k = –1); and, as well, they can be for any k between +1 and –1.  

To determine Rr from such input S-N lines means to make Eq. 4 reproduce them 

(then fc and fτ do not interfere since dsc = dτ = 0). In other words, Eq. 4 should turn into 

N = A/s
m
 for each of the input S-N lines. Based on this, by applying the basic Newton-

Leibniz theorem of the calculus (see the IDD site), the following equation is deduced 

for the Rr damage intensity along a straight radial k line in the σ'-σ" plane: 

 
1

*

m

r r

ms
R R s

i A

−

= =( )                                                     (6) 

 

where m and A are from the S-N line equation s
m
N = A; s, as already known, is the 

distance to the coordinate origin; i
* 

is a corrective determined by an equation (see the 

IDD site); it proves 4 if the mean (static) level sm is 0; otherwise, i
*
 is between 4 and ≈2 

if sm is close to 0, and i
*
 ≈ 2 if sm is far from 0; or, if the loading is pulsating, i

*
 = 2. 

As to the determination of Rr = Rr(σ',σ") in the whole σ'-σ" plane, a heavy 

mathematical expression of Rr is deduced. Its solution is only possible by successive 

approximations done by the IDD software. 

In terms of a zero Rr area, the following considerations apply. 

If the IDD user intends to have each input S-N line reproduced as breaking in two at 

a fatigue limit sl, then the so-called breaking mode of the IDD software is requested and 

a number of cycles Nl is entered which corresponds to sl (i.e. sl
m
Nl = A). 

If the IDD user intends to have each input S-N line reproduced as asymptotically 

(smoothly) bending (curving, turning) to a lower damage intensity limit sr < sl, the so-

called smooth mode is requested and a number of cycles Nr > Nl is entered. Then, Eq. 4 

turns into N = A/(s
m
 – sr

m
) i.e. the reproduced S-N line bends to sr. In such a case, the 

input line with the equation s
m
N = A is called Rr-prototype. In fact, the S-N lines entered 
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in the IDD software are, generally speaking, always Rr-prototypes. In particular, an Rr-

prototype coincides with the reproduced S-N line in the breaking mode only. 

If the IDD user does not intend to use either a fatigue limit sl or a distinct damage 

intensity limit sr, then the smooth mode is used but setting Nr as great, e.g. Nl = 10
9
, as 

not to have any significant difference between s
m
N = A and (s

m
 – sr

m
)N = A. Thus the 

input Rr-prototypes and the reproduced input S-N lines will practically coincide and 

continue downwards as still straight ones. 

Once Rr is determined so that the input S-N lines are reproduced in the form the IDD 

user prefers, then the same Rr damage intensity is ready for application of the Eq. 5 or 

Eq. 4 to any variable amplitude uniaxial or multiaxial but proportional loading (fc and fτ 

do not interfere). And then no rain-flow etc. cycle counting is necessary but the original 

loading directly runs under the computation. 

Even this feature already makes the IDD approach topical: there had been no idea 

before that fatigue life assessment under variable-amplitude uniaxial or proportional 

loading is possible without cycle counting. And now it is possible and it was 

successfully verified in [5]. With that, instead of Eq. 5, much supplier equation and 

software are used [5] based on the Newton-Leibniz theorem only. 

As to the ratios fc and fτ in Eq. 5, they were still not introduced in [1, 2, 3] as 

constants. Instead, Rc and Rτ were independently searched in the σ'-σ" plane as to 

satisfy a part of the experimental life data. Then they served very well to assess the rest 

of data. However, for mass application of the present IDD method into practice, it is 

better to introduce fc and fτ as constants and recommend verified values of them.  

On this occasion, fc and fτ are called factors of loading non-proportionality. To set 

them in Eq. 5 is the main theoretical and practical problem while applying IDD to non-

proportional loading. It is expected that these factors will be comparatively easy to be 

envisaged. Indeed, a relation like Eq. 4 on the differential level, even if based on 

parameters being problematic for the present, will be more reliable than any other 

relation on integral level influenced by the integration conditions. 

The loading non-proportionality factors fc and fτ are considered as new empirical 

material and component characteristics together with the traditional fatigue 

characteristics like (conditional) fatigue limits, parameters of S-N lines, etc. This paper, 

together with [7, 8, 9] reveals that, for the most popular first loading category (relating 

to beams), fc and fτ can be set as 2 and 3 so far. In the future, a thorough data-bank for 

recommendable values of fc and fτ and their application conditions should be created. In 

any case fc ≥ 1 and fτ  ≥ 1 are expected. For the second loading category (relating to 

shells and plates), fτ does not interfere (no rotation of the principal axes), but fc may, 

instead, reach a higher value, e.g. 10 [3].  

 

 

SHORT GENERAL REPRESTNTATION OF THE PRESENT IDD SOFTWARE 

 

Equation 5 is only performed by means of computers with original IDD software called 

Ellipse. It is freeware and includes FORTRAN programs which can be downloaded 
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from the IDD site. Demos are available there as a manual for self-teaching. There are 

many options at the input and at the output: besides the main output result of the 

computed life, several more additional results can be requested and interpreted. 

One, two or three arbitrary stress oscillograms are entered as a file containing their 

ordinates. It is called Current Data File or C-file. It may contain either several ordinates 

only or millions of ordinates. 

As ∆ elements should be short enough in order to substitute d differentials, 

intermediate ordinates are generated, if necessary, between every two successive 

original ordinates. For this purpose, trigonometric or cubic-spline interpolation is done. 

The program enabling the trigonometric interpolation is called EllipseT. It can also 

create C-files of sinusoidal oscillograms (in-phase or out-of-phase) at the request by the 

user. The program enabling the spline interpolation is called EllipseS. It is mainly 

envisaged for long C-files containing comparatively dense ordinates. 

Each Ellipse program is able to work in text mode only or in graph mode. The latter 

is enabled by a subprogram called Graf. In the graph mode, the σ'-σ" plane is displayed 

on the computer screen and the run of the loading trajectory (Sxy) (Fig. 3) can be seen. 

Thus, the consecutive ∆sxy elements and the accumulation of the ∆D differentials can be 

followed until the sum in Eq. 5 is finally computed. Simultaneously with the ∆sxy 

elements, the ∆τ elements also appear on a separate place of the computer screen [7, 8]. 

The processing of the C-file is led by another input file called Leading Data File or 

L-file. It contains the input Rr-prototypes and the number Nr which defines the 

borderline between the zero and non-zero Rr areas of the σ'-σ" plane in the smooth 

mode (or Nl is entered for Nr in the breaking mode). Together with the Rr-prototypes, 

analogous so-called Rc-prototypes and Rτ-prototypes are also included in the L-file in a 

way as to form the factors fc and fτ. Other more input data are numbers Nc and Nτ, 

analogous to Nr, defining the borderlines between the zero and non-zero Rc and Rτ areas. 

 

 

CONCLUSIVE NOTES 

 

A conviction is expressed that IDD as a concept is the most adequate for fatigue life 

assessment in the general loading case. Newton and Leibniz would have recommended 

it. Any skepticism on the part of some researchers would put them in the position of 

mathematicians prior to the discovery of the calculus who did not admire the idea of the 

infinitesimals. However, introducing the infinitely little quantities, the differentials, was 

the infinitely great progress of the human being’s thinking. Only then did the stormy 

scientific and technological progress starts. 

As to the present IDD method as a version of implementation of the IDD concept, it 

does not claim for perfection. Anyway, it is the high time now for the fatigue life 

researchers to readjust their thinking for IDD as a new way to re-interpret and use the 

fatigue life knowledge accumulated from Wöhler’s time to nowadays. Out of the 

question any idea is that IDD would depreciate the cycle counting approach and its 

practical application to particular loading cases. The question is that new followers 

153



should implement IDD, also in other versions of dD, and develop it parallel with the 

cycle counting approach: fruitful struggle of ideas will lead to better solutions. 

The above definition of the invariant loading differential ds is considered to be the 

single possible one. Any other method created by followers of the IDD concept may 

differ from the present method, but the ds definition, Figs 2 and 3, would hardly change. 

If following everything presented on the IDD site about the Rr, Rc and Rτ intensities 

in the σ'-σ" plane, it will become apparent that the IDD way of thinking suggests 

surprising re-interpretations of well-known old fatigue life problems and puts new ones. 

For example, the three loading types introduced are conceptually new. They do not refer 

to specific oscillogram’s variations as previous names of loading kinds refer (the new 

loading types are released from the specific integration conditions of the wave-forms). 

And again for example, so formulated, the pure third type of loading (dτ- or ∆τ-loading) 

had not been considered before. However, it proves to be of first-rate importance now. 

It is a maximized case in the meaning that all the planes parallel to z are equally critical. 

It is a “touch stone”, an “acid test” that may invalidate many of the fatigue life theories 

proposed: see [4] or/and the IDD site. 

Still in the vein of surprising re-interpretations, it is conceptually not correct for the 

cycle counting approach to take into account the mean stress effect at every cycle [5]: 

this makes discontinuities of the new function Rr(s); whereas, Rr(s) and the whole 

process of damage accumulation is physically continuous [5]. 

Concretized representation of the present IDD method and its software continues in 

the papers [7, 8, 9]. They report the latest verifications for fc and fτ, as well as for the 

numbers Nr, Nc and Nτ. 
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